960 resultados para Food-specific satiety


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fusarium verticillioides is considered one of the most important global sources of fumonisin contamination in food and feed. Corn is one of the main commodities produced in the Northeastern Region of Brazil. The present study investigated potential mycotoxigenic fungal strains belonging to the F. verticillioides species isolated from corn kernels in 3 different Regions of the Brazilian State of Pernambuco. A polyphasic approach including classical taxonomy, molecular biology, MALDI-TOF MS and MALDI-TOF MS/MS for the identification and characterisation of the F. verticillioides strains was used. Sixty F. verticillioides strains were isolated and successfully identified by classical morphology, proteomic profiles of MALDI-TOF MS, and by molecular biology using the species-specific primers VERT-1 and VERT-2. FUM1 gene was further detected for all the 60 F. verticillioides by using the primers VERTF-1 and VERTF-2 and through the amplification profiles of the ISSR regions using the primers (GTG)5 and (GACA)4. Results obtained from molecular analysis shown a low genetic variability among these isolates from the different geographical regions. All of the 60 F. verticillioides isolates assessed by MALDI-TOF MS/MS presented ion peaks with the molecular mass of the fumonisin B1 (721.83 g/mol) and B2 (705.83 g/mol)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tese de Doutoramento em Engenharia Química e Biológica.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Doctoral Dissertation for PhD degree in Chemical and Biological Engineering

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The occurrence of mycotoxigenic moulds such as Aspergillus, Penicillium and Fusarium in food and feed has an important impact on public health, by the appearance of acute and chronic mycotoxicoses in humans and animals, which is more severe in the developing countries due to lack of food security, poverty and malnutrition. This mould contamination also constitutes a major economic problem due the lost of crop production. A great variety of filamentous fungi is able to produce highly toxic secondary metabolites known as mycotoxins. Most of the mycotoxins are carcinogenic, mutagenic, neurotoxic and immunosuppressive, being ochratoxin A (OTA) one of the most important. OTA is toxic to animals and humans, mainly due to its nephrotoxic properties. Several approaches have been developed for decontamination of mycotoxins in foods, such as, prevention of contamination, biodegradation of mycotoxins-containing food and feed with microorganisms or enzymes and inhibition or absorption of mycotoxin content of consumed food into the digestive tract. Some group of Gram-positive bacteria named lactic acid bacteria (LAB) are able to release some molecules that can influence the mould growth, improving the shelf life of many fermented products and reducing health risks due to exposure to mycotoxins. Some LAB are capable of mycotoxin detoxification. Recently our group was the first to describe the ability of LAB strains to biodegrade OTA, more specifically, Pediococcus parvulus strains isolated from Douro wines. The pathway of this biodegradation was identified previously in other microorganisms. OTA can be degraded through the hydrolysis of the amide bond that links the L-β-phenylalanine molecule to the ochratoxin alpha (OTα) a non toxic compound. It is known that some peptidases from different origins can mediate the hydrolysis reaction like, carboxypeptidase A an enzyme from the bovine pancreas, a commercial lipase and several commercial proteases. So, we wanted to have a better understanding of this OTA degradation process when LAB are involved and identify which molecules where present in this process. For achieving our aim we used some bioinformatics tools (BLAST, CLUSTALX2, CLC Sequence Viewer 7, Finch TV). We also designed specific primers and realized gene specific PCR. The template DNA used came from LAB strains samples of our previous work, and other DNA LAB strains isolated from elderberry fruit, silage, milk and sausages. Through the employment of bioinformatics tools it was possible to identify several proteins belonging to the carboxypeptidase family that participate in the process of OTA degradation, such as serine type D-Ala-D-Ala carboxypeptidase and membrane carboxypeptidase. In conclusions, this work has identified carboxypeptidase proteins being one of the molecules present in the OTA degradation process when LAB are involved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A ocorrência de bolores micotoxigénicos pertencentes aos géneros Aspergillus, Penicillium e Fusarium em alimentos para consumo Humano e animal, tem um impacto importante sobre a saúde pública e constitui também um importante problema económico. Isto é devido à síntese por este tipo de fungos filamentosos de metabolitos altamente tóxicos conhecidos como micotoxinas. A maioria das micotoxinas são substâncias cancerígenas, mutagénicas, neurotóxicas e imunossupressoras, sendo a ocratoxina A (OTA) uma das mais importantes. A OTA é uma micotoxina, tóxica para os animais e Humanos principalmente devido às suas propriedades nefrotóxicas. Alguns grupos de bactérias gram positivas nomeadamente as bactérias do ácido láctico (BAL) são capazes de controlar o crescimento de fungos, melhorando e aumentando a vida útil de muitos produtos fermentados e, assim, reduzir os riscos para a saúde provocados pela exposição às micotoxinas. Algumas BAL são, também, capazes de destoxificar certas micotoxinas. Em trabalhos anteriores do nosso grupo foi observada a biodegradação da OTA por estirpes de Pediococcus parvulus isoladas de vinhos do Douro. Assim, com este trabalho, pretendeu-se compreender com maior detalhe o processo de biodegradação da OTA pelas referidas estirpes e identificar quais as enzimas que estão associadas à sua biodegradação. Para atingir este objetivo utilizaram-se algumas ferramentas ioinformáticas (BLAST, CLUSTALX2, CLC Sequence Viewer 7, Finch TV), desenharam-se primers específicos e realizaram-se PCR específicos para os genes envolvidos. Através da utilização de ferramentas de bioinformática, foi possível identificar várias proteínas que pertencem à família das carboxipeptidases e que podem eventualmente participar no processo da degradação da OTA, tais como D-Ala-D-Ala carboxipeptidase serínica e carboxipeptidase membranar. Estas BAL podem desempenhar um papel importante na destoxificação da OTA, sendo as carboxipeptidases uma das enzimas envolvidas na sua biodegradação.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The presence of mycotoxins in foodstuff is a matter of concern for food safety. Mycotoxins are toxic secondary metabolites produced by certain molds, being ochratoxin A (OTA) one of the most relevant. Wines can also be contaminated with these toxicants. Several authors have demonstrated the presence of mycotoxins in wine, especially ochratoxin A (OTA) [1]. Its chemical structure is a dihydro-isocoumarin connected at the 7-carboxy group to a molecule of L--phenylalanine via an amide bond. As these toxicants can never be completely removed from the food chain, many countries have defined levels in food in order to attend health concerns. OTA contamination of wines might be a risk to consumer health, thus requiring treatments to achieve acceptable standards for human consumption [2]. The maximum acceptable level of OTA in wines is 2.0 g/kg according to the Commission regulation No. 1881/2006 [3]. Therefore, the aim of this work was to reduce OTA to safer levels using different fining agents, as well as their impact on white wine physicochemical characteristics. To evaluate their efficiency, 11 commercial fining agents (mineral, synthetic, animal and vegetable proteins) were used to get new approaches on OTA removal from white wine. Trials (including a control without addition of a fining agent) were performed in white wine artificially supplemented with OTA (10 µg/L). OTA analysis were performed after wine fining. Wine was centrifuged at 4000 rpm for 10 min and 1 mL of the supernatant was collected and added of an equal volume of acetonitrile/methanol/acetic acid (78:20:2 v/v/v). Also, the solid fractions obtained after fining, were centrifuged (4000 rpm, 15 min), the resulting supernatant discarded, and the pellet extracted with 1 mL of the above solution and 1 mL of H2O. OTA analysis was performed by HPLC with fluorescence detection according to Abrunhosa and Venâncio [4]. The most effective fining agent in removing OTA (80%) from white wine was a commercial formulation that contains gelatine, bentonite and activated carbon. Removals between 10-30% were obtained with potassium caseinate, yeast cell walls and pea protein. With bentonites, carboxymethylcellulose, polyvinylpolypyrrolidone and chitosan no considerable OTA removal was verified. Following, the effectiveness of seven commercial activated carbons was also evaluated and compared with the commercial formulation that contains gelatine, bentonite and activated carbon. The different activated carbons were applied at the concentration recommended by the manufacturer in order to evaluate their efficiency in reducing OTA levels. Trial and OTA analysis were performed as explained previously. The results showed that in white wine all activated carbons except one reduced 100% of OTA. The commercial formulation that contains gelatine, bentonite and activated carbon (C8) reduced only 73% of OTA concentration. These results may provide useful information for winemakers, namely for the selection of the most appropriate oenological product for OTA removal, reducing wine toxicity and simultaneously enhancing food safety and wine quality.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chitosan coating was applied in Lactoferrin (Lf)-Glycomacropeptide (GMP) nanohydrogels by layer-by-layer coating process. A volume ratio of 0.1 of Lf-GMP nanohydrogels (0.2 mg.mL-1, at pH 5.0) to chitosan (1 mg.mL-1, at pH 3) demonstrated to be the optimal condition to obtain stable nanohydrogels with size of 230 ± 12 nm, a PdI of 0.22 ± 0.02 and a -potential of 30.0 ± 0.15 mV. Transmission electron microscopy (TEM) images showed that the application of chitosan coating in Lf-GMP did not affect the spherical shape of nanohydrogels and confirmed the low aggregation of nanohydrogels in solution. The analysis of chemical interactions between chitosan and Lf-GMP nanohydrogels were performed by Fourier transform infrared spectroscopy (FTIR) and by circular dichroism (CD) that revealed that a specific chemical interaction occurring between functional groups of protein-based nanohydrogels and active groups of the chitosan was established. The effect of chitosan coating on release mechanisms of Lf-GMP nanohydrogels at acid conditions (pH 2, 37 ºC) was evaluated by the encapsulation of a model compound (caffeine) in these systems. Linear Superposition Model was used to fit the experimental data and revealed that Fick and relaxation mechanisms are involved in caffeine release. It was also observed that the Fick contribution increase with the application of chitosan coating. In vitro gastric digestion was performed with Lf-GMP nanohydrogels and Lf-GMP nanohydrogels with chitosan coating and it was observed that the presence of chitosan improve the stability of Lf and GMP (proteins were hydrolysed at a slower rate and were present in solution by longer time). Native electrophoreses revealed that the nanohydrogels without coating remained intact in solution until 15 min and with chitosan coating remained intact until 60 min, during gastric digestion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Polysaccharides and oligosaccharides can improve quality and enhance nutritional value of final food products due to their technological and nutritional features ranging from their capacity to improve texture to their effect as dietary fibers. For this reason, they are among the most studied ingredients in the food industry. The use of natural polysaccharides and oligosaccharides as food additives has been a reality since the food industry understood their potential technological and nutritional applications. Currently, the replacement of traditional ingredients and/or the synergy between traditional ingredients and polysaccharides and oligosaccharides are perceived as promising approaches by the food industry. Traditionally, polysaccharides have been used as thickening, emulsifying, and stabilizing agents, however, at this moment polysaccharides and oligosaccharides claim health and nutritional advantages, thus opening a new market of nutritional and functional foods. Indeed, their use as nutritional food ingredients enabled the food industry to develop a countless number of applications, e.g., fat replacers, prebiotics, dietary fiber, and antiulcer agents. Based on this, among the scientific community and food industry, in the last years many research studies and commercial products showed the possibility of using either new or already used sources (though with changed properties) of polysaccharides for the production of food additives with new and enhanced properties. The increasing interest in such products is clearly illustrated by the market figures and consumption trends. As an example, the sole market of hydrocolloids is estimated to reach $7 billion in 2018. Moreover, oligosaccharides can be found in more than 500 food products resulting in a significant daily consumption. A recent study from the Transparency Market Research on Prebiotic Ingredients Market reported that prebiotics' demand was worth $2.3 billion in 2012 and it is estimated to reach $4.5 billion in 2018, growing at a compound annual growth rate of 11.4% between 2012 and 2018. The entrance of this new generation of food additives in the market, often claiming health and nutritional benefits, imposes an impartial analysis by the legal authorities regarding the accomplishment of requirements that have been established for introducing novel ingredients/food, including new poly- and oligosaccharides. This chapter deals with the potential use of polysaccharides and oligosaccharides as food additives, as well as alternative sources of these compounds and their possible applications in food products. Moreover, the regulation process to introduce novel polysaccharides and oligosaccharides in the market as food additives and to assign them health claims is discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Biofilms in food processing plants represent not only a problem to human health but also cause economic losses by technical failure in several systems. In fact, many foodborne outbreaks have been found to be associated with biofilms. Biofilms may be prevented by regular cleaning and disinfection, but this does not completely prevent biofilm formation. Besides, due to their diversity and to the development of specialized phenotypes, it is well known that biofilms are more resistant to cleaning and disinfection than planktonic microorganisms. In recent years, a considerable effort has been made in the prevention of microbial adhesion and biofilm formation on food processing surfaces and novel technologies have been introduced. In this context, this chapter discusses the main conventional and emergent strategies that have been employed to prevent bacterial adhesion to food processing surfaces and thus to efficiently maintain good hygiene throughout the food industries.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

[Excerpt] Introduction: Thermal processing is probably the most important process in food industry that has been used since prehistoric times, when it was discovered that heat enhanced the palatability and the life of the heat-treated food. Thermal processing comprehends the heating of foods at a defined temperature for a certain length of time. However, in some foods, the high thermotolerance of certain enzymes and microorganisms, their physical properties (e.g.,highviscosity),ortheircomponents(e.g.,solidfractions) require the application of extreme heat treatments that not only are energy intensive, but also will adversely affect the nutritional and organoleptic properties of the food. Technologies such as ohmic heating, dielectric heating (which includes microwave heating and radiofrequency heating), inductive heating, and infrared heating are available to replace, or complement, the traditional heat-dependent technologies (heating through superheated steam, hot air, hot water, or other hot liquid, being the heating achieved either through direct contact with those agents – mostly superheated steam – or through contact with a hot surface which is in turn heated by such agents). Given that the “traditional” heatdependent technologies are thoroughly described in the literature, this text will be mainly devoted to the so-called “novel” thermal technologies. (...)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The prelims comprise: * Half-Title Page * Dedication Page * Title Page * Copyright Page * Table of Contents * Foreword * Acknowledgements * Disclaimer * Introduction

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação de mestrado em Genética Molecular

Relevância:

20.00% 20.00%

Publicador:

Resumo:

During a diagnostic investigation in a 40-year-old male with pericardial effusion associated with hypothyroidism, cholesterol pericarditis was detected. We report a brief review on the etiopathogeny, clinical findings, and therapeutical possibilities of this entity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Smart Drug Search is publicly accessible at http://sing.ei.uvigo.es/sds/. The BIOMedical Search Engine Framework is freely available for non-commercial use at https://github.com/agjacome/biomsef

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bacterial cellulose (BC) films from two distinct sources (obtained by static culture with Gluconacetobacter xylinus ATCC 53582 (BC1) and from a commercial source (BC2)) were modified by bovine lactoferrin (bLF) adsorption. The functionalized films (BC+bLF) were assessed as edible antimicrobial packaging, for use in direct contact with highly perishable foods, specifically fresh sausage as a model of meat products. BC+bLF films and sausage casings were characterized regarding their water vapour permeability (WVP), mechanical properties, and bactericidal efficiency against two food pathogens, Escherichia coli and Staphylococcus aureus. Considering their edibility, an in vitro gastrointestinal tract model was used to study the changes occurring in the BC films during passage through the gastrointestinal tract. Moreover, the cytotoxicity of the BC films against 3T3 mouse embryo fibroblasts was evaluated. BC1 and BC2 showed equivalent density, WVP and maximum tensile strength. The percentage of bactericidal efficiency of BC1 and BC2 with adsorbed bLF (BC1+bLF and BC2+bLF, respectively) in the standalone films and in inoculated fresh sausages, was similar against E. coli (mean reduction 69 % in the films per se versus 94 % in the sausages) and S. aureus (mean reduction 97 % in the films per se versus 36 % in the case sausages). Moreover, the BC1+bLF and BC2+bLF films significantly hindered the specific growth rate of both bacteria. Finally, no relevant cytotoxicity against 3T3 fibroblasts was found for the films before and after the simulated digestion. BC films with adsorbed bLF may constitute an approach in the development of bio-based edible antimicrobial packaging systems.