992 resultados para Fluorescence quantum yield
Resumo:
A Work Project, presented as part of the requirements for the Award of a Masters Degree in Finance from the NOVA – School of Business and Economics
Resumo:
Confocal scanning fluorescence microscopy has become widely used in cell biology and pathology. In conjunction with monoclonal antibodies it may turn out to be a powerful diagnostic tool that also enables detailed studies of tissue forms of Trypanosoma cruzi.
Resumo:
A Work Project, presented as part of the requirements for the Award of a Masters Degree in Economics from the NOVA – School of Business and Economics
Resumo:
A Work Project, presented as part of the requirements for the Award of a Masters Degree in Finance from the NOVA – School of Business and Economics
Resumo:
This work describes an electrochemical and quantum chemical investigation of the fipronil insecticide. Cyclic voltammetry (CV) and square wave voltammetry (SWV) experiments were performed over a graphite-polyurethane (GPU) composite electrode. The fipronil molecule presents an one?electron irreversible oxidation reaction. Profiting the SWV signal a square wave stripping voltammetry (SWSV) procedure to determine the fipronil molecule in a 0.10 mol L-1 Britton-Robinson buffer solution, pH 8.0 was developed with accumulation potential and time of 0.50 V and 120 s, respectively. The limits of detection and quantification were 0.80 and 2.67 ?g L-1, respectively. Recovery tests were performed in three natural waters samples with values ranging from 99.67 to 101.37%. Quantum chemical studies showed that the nitrogen atom of the pyrazole group is the most probable oxidation site of the fipronil molecule.
Resumo:
Dissertação para obtenção do Grau de Doutor em Engenharia Química e Bioquímica, Especialidade em Engenharia Bioquímica
Resumo:
Double Degree. A Work Project presented as part of the requirements for the Award of a Masters Degree in Economics from the NOVA- School of Business and Economics and a Masters Degree in Management from Louvain School of Management
Resumo:
This paper studies the effects of monetary policy on mutual fund risk taking using a sample of Portuguese fixed-income mutual funds in the 2000-2012 period. Firstly I estimate time-varying measures of risk exposure (betas) for the individual funds, for the benchmark portfolio, as well as for a representative equally-weighted portfolio, through 24-month rolling regressions of a two-factor model with two systematic risk factors: interest rate risk (TERM) and default risk (DEF). Next, in the second phase, using the estimated betas, I try to understand what portion of the risk exposure is in excess of the benchmark (active risk) and how it relates to monetary policy proxies (one-month rate, Taylor residual, real rate and first principal component of a cross-section of government yields and rates). Using this methodology, I provide empirical evidence that Portuguese fixed-income mutual funds respond to accommodative monetary policy by significantly increasing exposure, in excess of their benchmarks, to default risk rate and slightly to interest risk rate as well. I also find that the increase in funds’ risk exposure to gain a boost in return (search-for-yield) is more pronounced following the 2007-2009 global financial crisis, indicating that the current historic low interest rates may incentivize excessive risk taking. My results suggest that monetary policy affects the risk appetite of non-bank financial intermediaries.
Resumo:
To find sustainable solutions for the production of energy, it is necessary to create photovoltaic technologies that make every photon count. To pursue this necessity, in the present work photodetectors of zinc oxide embedded with nano-structured materials, that significantly raise the conversion of solar energy to electric energy, were developed. The novelty of this work is on the development of processing methodologies in which all steps are in solution: quantum dots synthesis, passivation of their surface and sol-gel deposition. The quantum dot solutions with different capping agents were characterized by UVvisible absorption spectroscopy, spectrofluorimetry, dynamic light scattering and transmission electron microscopy. The obtained quantum dots have dimensions between 2 and 3nm. These particles were suspended in zinc acetate solutions and used to produce doped zinc oxide films with embedded quantum dots, whose electric response was tested. The produced nano-structured zinc oxide materials have a superior performance than the bulk, in terms of the produced photo-current. This indicates that an intermediate band material should have been produced that acts as a photovoltaic medium for solar cells. The results are currently being compiled in a scientific article, that is being prepared for possible submission to Energy and Environmental Science or Nanoscale journals.
Resumo:
INTRODUCTION: Peak and trough serum concentrations of vancomycin were determined in term newborn infants with confirmed or suspected Staphylococcus sp sepsis by high performance liquid chromatography and flourescence polarization immunoassay. OBJECTIVE: To statistically compare the results of the high performance liquid chromatography and flourescence polarization immunoassay techniques for measuring serum vancomycin concentrations. METHODS: Eighteen peak and 20 trough serum samples were assayed for vancomycin concentrations using high performance liquid chromatography and flourescence polarization immunoassay from October 1995 to October 1997. RESULTS: The linear correlation coefficients for high performance liquid chromatography and flourescence polarization immunoassay were 0.27 (peak, P = 0.110) and 0.26 (trough, P = 0.1045) respectively, which were not statistically significant. CONCLUSION: There was wide variation in serum vancomycin concentrations determined by high performance liquid chromatography as compared with those determined by flourescence polarization immunoassay. There was no recognizable pattern in the variability; in an apparently random fashion, the high performance liquid chromatography measurement was sometimes substantially higher than the flourescence polarization immunoassay measurement, and at other times it was substantially lower.
Resumo:
PURPOSE: Williams-Beuren syndrome is a rare multiple anomalies/mental retardation syndrome caused by deletion of contiguous genes at chromosome region 7q11.23. The aim of this work was to determine the frequency and the types of renal and urinary tract anomalies in 20 patients with Williams-Beuren syndrome. METHODS: The fluorescence in situ hybridization test using a LSI Williams syndrome region DNA probe was performed for all 20 patients to confirm the diagnosis of Williams-Beuren syndrome. A prospective study was performed in order to investigate renal and urinary aspects using laboratory assays to check renal function, ultrasonography of the kidneys and urinary tract, voiding cystourethrogram and urodynamics. RESULTS: Deletion of the elastin gene (positive fluorescence in situ hybridization test) was found in 17 out of 20 patients. Renal alterations were diagnosed in 5 of 17 (29%) the patients with the deletion and in 1 of 3 patients without the deletion. Fourteen patients with the deletion presented dysfunctional voiding. Arterial hypertension was diagnosed in 3 patients with deletions and 1 of these presented bilateral stenosis of the renal arteries. CONCLUSIONS: Due to the high incidence of renal and urinary abnormalities in Williams-Beuren syndrome, performing a systematic laboratory and sonographic evaluation of the patients is recommended.
Resumo:
Equity research report
Resumo:
The advent of bioconjugation impacted deeply the world of sciences and technology. New biomolecules were found, biological processes were understood, and novel methodologies were formed due to the fast expansion of this area. The possibility of creating new effective therapies for diseases like cancer is one of big applications of this now big area of study. Off target toxicity was always the problem of potent small molecules with high activity towards specific tumour targets. However, chemotherapy is now selective due to powerful linkers that connect targeting molecules with affinity to interesting biological receptors and cytotoxic drugs. This linkers must have very specific properties, such as high stability in plasma, no toxicity, no interference with ligand affinity nor drug potency, and at the same time, be able to lyse once inside the target molecule to release the therapeutic warhead. Bipolar environments between tumour intracellular and extracellular medias are usually exploited by this linkers in order to complete this goal. The work done in this thesis explores a new model for that same task, specific cancer drug delivery. Iminoboronates were studied due to its remarkable selective stability towards a wide pH range and endogenous molecules. A fluorescence probe was design to validate this model by creating an Off/On system and determine the payload release location in situ. A process was optimized to synthetize the probe 8-(1-aminoethyl)-7-hydroxy-coumarin (1) through a reductive amination reaction in a microwave reactor with 61 % yield. A method to conjugate this probe to ABBA was also optimized, obtaining the iminoboronate in good yields in mild conditions. The iminoboronate model was studied regarding its stability in several simulated biological environments and each half-life time was determined, showing the conjugate is stable most of the cases except in tumour intracellular systems. The construction of folate-ABBA-coumarin bioconjugate have been made to complete this evaluation. The ability to be uptaken by a cancer cell through endocytosis process and the conjugation delivery of coumarin fluorescence payload are two features to hope for in this construct.
Resumo:
Polymer based scintillator composites have been produced by combining polystyrene (PS) and Gd2O3:Eu3+ scintillator nanoparticles. Polystyrene has been used since it is a flexible and stable binder matrix, resistant to thermal and light deterioration and with suitable optical properties. Gd2O3:Eu3+ has been selected as scintillator material due to its wide band gap, high density and visible light yield. The optical, thermal and electrical characteristics of the composites were studied as a function of filler content, together with their performance as scintillator material. Additionally 1wt.% of 2,5 dipheniloxazol (PPO) and 0.01wt.% of (1,4-bis(2-(5-phenioxazolil))-benzol (POPOP) were introduced in the polymer matrix in order to strongly improve light yield, i.e. the measured intensity of the output visible radiation, under X-ray irradiation. Whereas increasing scintillator filler concentration (from 0.25wt.% to 7.5wt.%) increases scintillator light yield, decreases the optical transparency of the composite. The addition of PPO and POPOP, strongly increased the overall 2 transduction performance of the composite due to specific absorption and re-emission processes. It is thus shown that Gd2O3:Eu3+/PPO/POPOP/PS composites in 0.25 wt.% of scintillator content with fluorescence molecules is suitable for the development of innovate large area X-ray radiation detectors with huge demand from the industries.
Resumo:
Recently, CdTe semiconductor quantum dots (QDs) have attracted great interest due to their unique properties [1]. Their dispersion into polymeric matrices would be very for several optoelectronics applications. Despite its importance, there has been relatively little work done on charge transport in the QD polymeric films [2], which is mainly affected by their structural and morphological properties. In the present work, polymer-quantum dot nanocomposites films based on optically transparent polymers in the visible spectral range and CdTe QDs with controlled particle size and emission wavelength, were prepared via solvent casting. Photoluminescent (PL) measurements indicate different emission intensity of the nanocomposites. A blue shift of the emission peak compared to that of QDs in solution occurred, which is attributed to the QDs environment changes. The morphological and structural properties of the CdTe nanocomposites were evaluated. Since better QDs dispersion was achieved, PMMA seemed to be the most promising matrix. Electrical properties measurements indicate an ohmic behavior.