925 resultados para FRACTAL DIMENSION
Resumo:
A chaotic output was obtained previously by us, from an Optical Programmable Logic Cell when a feedback is added. Some time delay is given to the feedback in order to obtain the non-linear behavior. The working conditions of such a cell is obtained from a simple diagram with fractal properties. We analyze its properties as well as the influence of time delay on the characteristics of the working diagram. A further study of the chaotic obtained signal is presented.
Resumo:
The physical appearance of granular media suggests the existence of geometrical scale invariance. The paper discuss how this physico-empirical property can be mathematically encoded leading to different generative models: a smooth one encoded by a differential equation and another encoded by an equation coming from a measure theoretical property.
Resumo:
We propose a new measure to characterize the dimension of complex networks based on the ergodic theory of dynamical systems. This measure is derived from the correlation sum of a trajectory generated by a random walker navigating the network, and extends the classical Grassberger-Procaccia algorithm to the context of complex networks. The method is validated with reliable results for both synthetic networks and real-world networks such as the world air-transportation network or urban networks, and provides a computationally fast way for estimating the dimensionality of networks which only relies on the local information provided by the walkers.
Resumo:
The laplacian pyramid is a well-known technique for image processing in which local operators of many scales, but identical shape, serve as the basis functions. The required properties to the pyramidal filter produce a family of filters, which is unipara metrical in the case of the classical problem, when the length of the filter is 5. We pay attention to gaussian and fractal behaviour of these basis functions (or filters), and we determine the gaussian and fractal ranges in the case of single parameter ?. These fractal filters loose less energy in every step of the laplacian pyramid, and we apply this property to get threshold values for segmenting soil images, and then evaluate their porosity. Also, we evaluate our results by comparing them with the Otsu algorithm threshold values, and conclude that our algorithm produce reliable test results.
Resumo:
The study of granular systems is of great interest to many fields of science and technology. The packing of particles affects to the physical properties of the granular system. In particular, the crucial influence of particle size distribution (PSD) on the random packing structure increase the interest in relating both, either theoretically or by computational methods. A packing computational method is developed in order to estimate the void fraction corresponding to a fractal-like particle size distribution.
Resumo:
This special issue gathers together a number of recent papers on fractal geometry and its applications to the modeling of flow and transport in porous media. The aim is to provide a systematic approach for analyzing the statics and dynamics of fluids in fractal porous media by means of theory, modeling and experimentation. The topics covered include lacunarity analyses of multifractal and natural grayscale patterns, random packing's of self-similar pore/particle size distributions, Darcian and non-Darcian hydraulic flows, diffusion within fractals, models for the permeability and thermal conductivity of fractal porous media and hydrophobicity and surface erosion properties of fractal structures.
Resumo:
Soil structure plays an important role in flow and transport phenomena, and a quantitative characterization of the spatial heterogeneity of the pore space geometry is beneficial for prediction of soil physical properties. Morphological features such as pore-size distribution, pore space volume or pore?solid surface can be altered by different soil management practices. Irregularity of these features and their changes can be described using fractal geometry. In this study, we focus primarily on the characterization of soil pore space as a 3D geometrical shape by fractal analysis and on the ability of fractal dimensions to differentiate between two a priori different soil structures. We analyze X-ray computed tomography (CT) images of soils samples from two nearby areas with contrasting management practices. Within these two different soil systems, samples were collected from three depths. Fractal dimensions of the pore-size distributions were different depending on soil use and averaged values also differed at each depth. Fractal dimensions of the volume and surface of the pore space were lower in the tilled soil than in the natural soil but their standard deviations were higher in the former as compared to the latter. Also, it was observed that soil use was a factor that had a statistically significant effect on fractal parameters. Fractal parameters provide useful complementary information about changes in soil structure due to changes in soil management. Read More: http://www.worldscientific.com/doi/abs/10.1142/S0218348X14400118?queryID=%24%7BresultBean.queryID%7D&
Resumo:
The study of granular systems is of great interest to many fields of science and technology. The packing of particles affects to the physical properties of the granular system. In particular, the crucial influence of particle size distribution (PSD) on the random packing structure increase the interest in relating both, either theoretically or by computational methods. A packing computational method is developed in order to estimate the void fraction corresponding to a fractal-like particle size distribution.
Resumo:
When Dictyostelium discoideum cells are drawn into a fine glass capillary, they rapidly begin the first steps toward the formation of prestalk and prespore zones. Some of the events occur within a minute or two, whereas others follow later. The cells in the front segment are actively motile and those in the hind segment are passive. The volumes of the segments are proportional for different-sized cell masses, and those proportions are the same as those found in normal slugs. When the cells are stained with the vital dye neutral red, the anterior zone becomes darker simultaneously with the formation of the division line. Green fluorescent protein expressed from a stalk-specific promoter is synthesized mostly in the anterior end. Later, this capillary prestalk zone shows a sharp increase in alkaline phosphatase activity, which is known to be characteristic of prestalk cells.
Resumo:
Fractal antennas have been proposed to improve the bandwidth of resonant structures and optical antennas. Their multiband characteristics are of interest in radiofrequency and microwave technologies. In this contribution we link the geometry of the current paths built-in the fractal antenna with the spectral response. We have seen that the actual currents owing through the structure are not limited to the portion of the fractal that should be geometrically linked with the signal. This fact strongly depends on the design of the fractal and how the different scales are arranged within the antenna. Some ideas involving materials that could actively respond to the incoming radiation could be of help to spectrally select the response of the multiband design.
Resumo:
We numerically investigate the effects of inhomogeneities in the energy spectrum of aperiodic semiconductor superlattices, focusing our attention on Thue-Morse and Fibonacci sequences. In the absence of disorder, the corresponding electronic spectra are self-similar. The presence of a certain degree of randomness, due to imperfections occurring during the growth processes, gives rise to a progressive loss of quantum coherence, smearing out the finer details of the energy spectra predicted for perfect aperiodic superlattices and spurring the onset of electron localization. However, depending on the degree of disorder introduced, a critical size for the system exists, below which peculiar transport properties, related to the pre-fractal nature of the energy spectrum, may be measured.
Resumo:
This paper will initially review integral concepts found within Heidegger’s understanding of existence or being - namely the dialectic between authentic and inauthentic living, and by extension, existential guilt, anxiety, and regret. Next, I will discuss a particular dimension of inauthenticity found at the intersection of existential guilt and regret, termed existential dissonance. This term, adapted from Festinger’s theory of cognitive dissonance will serve to illuminate several clinical phenomena. To ground this concept further, I will provide two case examples that further express and clarify this concept.
Resumo:
In this paper we give an example of a nonlattice self-similar fractal string such that the set of real parts of their complex dimensions has an isolated point. This proves that, in general, the set of dimensions of fractality of a fractal string is not a perfect set.
Resumo:
Este trabajo surge de una reflexión de las tantas que se plantea el profesor cada curso académico. Estas reflexiones nos han llevado a analizar los distintos puntos de vista del estudiante y del profesor frente a la realidad que se desarrolla en el aula, tratando aspectos como la motivación y el trabajo del estudiante, la masificación de las aulas y el diseño de las actividades formativas. Resultado de este estudio, se propone un modelo docente basado en los principios de la geometría fractal, en el sentido de que se plantean diferentes niveles de abstracción para las diversas actividades formativas y éstas son auto similares, es decir, se descomponen una y otra vez. En cada nivel una actividad se descompone en tareas de un nivel inferior junto con su evaluación correspondiente. Con este modelo se fomenta la retroalimentación y la motivación del estudiante. El modelo presentado se contextualiza en una asignatura de introducción a la programación pero es totalmente generalizable a otra materia.