990 resultados para Estimation errors
Resumo:
Le modèle GARCH à changement de régimes est le fondement de cette thèse. Ce modèle offre de riches dynamiques pour modéliser les données financières en combinant une structure GARCH avec des paramètres qui varient dans le temps. Cette flexibilité donne malheureusement lieu à un problème de path dependence, qui a empêché l'estimation du modèle par le maximum de vraisemblance depuis son introduction, il y a déjà près de 20 ans. La première moitié de cette thèse procure une solution à ce problème en développant deux méthodologies permettant de calculer l'estimateur du maximum de vraisemblance du modèle GARCH à changement de régimes. La première technique d'estimation proposée est basée sur l'algorithme Monte Carlo EM et sur l'échantillonnage préférentiel, tandis que la deuxième consiste en la généralisation des approximations du modèle introduites dans les deux dernières décennies, connues sous le nom de collapsing procedures. Cette généralisation permet d'établir un lien méthodologique entre ces approximations et le filtre particulaire. La découverte de cette relation est importante, car elle permet de justifier la validité de l'approche dite par collapsing pour estimer le modèle GARCH à changement de régimes. La deuxième moitié de cette thèse tire sa motivation de la crise financière de la fin des années 2000 pendant laquelle une mauvaise évaluation des risques au sein de plusieurs compagnies financières a entraîné de nombreux échecs institutionnels. À l'aide d'un large éventail de 78 modèles économétriques, dont plusieurs généralisations du modèle GARCH à changement de régimes, il est démontré que le risque de modèle joue un rôle très important dans l'évaluation et la gestion du risque d'investissement à long terme dans le cadre des fonds distincts. Bien que la littérature financière a dévoué beaucoup de recherche pour faire progresser les modèles économétriques dans le but d'améliorer la tarification et la couverture des produits financiers, les approches permettant de mesurer l'efficacité d'une stratégie de couverture dynamique ont peu évolué. Cette thèse offre une contribution méthodologique dans ce domaine en proposant un cadre statistique, basé sur la régression, permettant de mieux mesurer cette efficacité.
Resumo:
L’analyse biomécanique du mouvement humain en utilisant des systèmes optoélectroniques et des marqueurs cutanés considère les segments du corps comme des corps rigides. Cependant, le mouvement des tissus mous par rapport à l'os, c’est à dire les muscles et le tissu adipeux, provoque le déplacement des marqueurs. Ce déplacement est le fait de deux composantes, une composante propre correspondant au mouvement aléatoire de chaque marqueur et une composante à l’unisson provoquant le déplacement commun des marqueurs cutanés lié au mouvement des masses sous-jacentes. Si nombre d’études visent à minimiser ces déplacements, des simulations ont montré que le mouvement des masses molles réduit la dynamique articulaire. Cette observation est faite uniquement par la simulation, car il n'existe pas de méthodes capables de dissocier la cinématique des masses molles de celle de l’os. L’objectif principal de cette thèse consiste à développer une méthode numérique capable de distinguer ces deux cinématiques. Le premier objectif était d'évaluer une méthode d'optimisation locale pour estimer le mouvement des masses molles par rapport à l’humérus obtenu avec une tige intra-corticale vissée chez trois sujets. Les résultats montrent que l'optimisation locale sous-estime de 50% le déplacement des marqueurs et qu’elle conduit à un classement de marqueurs différents en fonction de leur déplacement. La limite de cette méthode vient du fait qu'elle ne tient pas compte de l’ensemble des composantes du mouvement des tissus mous, notamment la composante en unisson. Le second objectif était de développer une méthode numérique qui considère toutes les composantes du mouvement des tissus mous. Plus précisément, cette méthode devait fournir une cinématique similaire et une plus grande estimation du déplacement des marqueurs par rapport aux méthodes classiques et dissocier ces composantes. Le membre inférieur est modélisé avec une chaine cinématique de 10 degrés de liberté reconstruite par optimisation globale en utilisant seulement les marqueurs placés sur le pelvis et la face médiale du tibia. L’estimation de la cinématique sans considérer les marqueurs placés sur la cuisse et le mollet permet d'éviter l’influence de leur déplacement sur la reconstruction du modèle cinématique. Cette méthode testée sur 13 sujets lors de sauts a obtenu jusqu’à 2,1 fois plus de déplacement des marqueurs en fonction de la méthode considérée en assurant des cinématiques similaires. Une approche vectorielle a montré que le déplacement des marqueurs est surtout dû à la composante à l’unisson. Une approche matricielle associant l’optimisation locale à la chaine cinématique a montré que les masses molles se déplacent principalement autour de l'axe longitudinal et le long de l'axe antéro-postérieur de l'os. L'originalité de cette thèse est de dissocier numériquement la cinématique os de celle des masses molles et les composantes de ce mouvement. Les méthodes développées dans cette thèse augmentent les connaissances sur le mouvement des masses molles et permettent d’envisager l’étude de leur effet sur la dynamique articulaire.
Resumo:
Les travaux portent sur l’estimation de la variance dans le cas d’une non- réponse partielle traitée par une procédure d’imputation. Traiter les valeurs imputées comme si elles avaient été observées peut mener à une sous-estimation substantielle de la variance des estimateurs ponctuels. Les estimateurs de variance usuels reposent sur la disponibilité des probabilités d’inclusion d’ordre deux, qui sont parfois difficiles (voire impossibles) à calculer. Nous proposons d’examiner les propriétés d’estimateurs de variance obtenus au moyen d’approximations des probabilités d’inclusion d’ordre deux. Ces approximations s’expriment comme une fonction des probabilités d’inclusion d’ordre un et sont généralement valides pour des plans à grande entropie. Les résultats d’une étude de simulation, évaluant les propriétés des estimateurs de variance proposés en termes de biais et d’erreur quadratique moyenne, seront présentés.
Resumo:
La progression de l’espérance de vie au Québec reflète l’amélioration de la santé de la population. Toutefois, des décès continuent à survenir prématurément avant l’âge de 75 ans. Une part de cette mortalité prématurée est potentiellement évitable. L'objectif de ce mémoire est d’estimer la mortalité évitable au Québec de 1981-1985 à 2005-2009. Pour cela, la méthode de Tobias et Jackson (2001) a été appliquée sur des données de décès, fournies par l’Institut national de santé publique du Québec, pour estimer les taux de mortalité évitable totale et pour chacun des sexes. Cette approche nous a, par ailleurs, permis d’estimer des taux de mortalité évitable selon trois paliers de prévention : primaire, secondaire et tertiaire. Nos résultats démontrent une tendance à la baisse de la mortalité évitable à travers le temps. Cette baisse a été enregistrée chez les deux sexes, mais des disparités de mortalité évitable existent entre les hommes et les femmes. En effet, la mortalité évitable des hommes est plus élevée que celle des femmes et cet écart de mortalité est principalement dû à la mortalité évitable associée à la prévention primaire. L’analyse de la mortalité évitable par cause de décès fait ressortir que le cancer du poumon est la principale cause de décès évitable tant chez les hommes que chez les femmes en 2005-2009. Durant cette même période, le cancer du sein et les cardiopathies ischémiques étaient la deuxième cause de décès évitable respectivement chez les femmes et chez les hommes.
Resumo:
Suite à un stage avec la compagnie Hatch, nous possédons des jeux de données composés de séries chronologiques de vitesses de vent mesurées à divers sites dans le monde, sur plusieurs années. Les ingénieurs éoliens de la compagnie Hatch utilisent ces jeux de données conjointement aux banques de données d’Environnement Canada pour évaluer le potentiel éolien afin de savoir s’il vaut la peine d’installer des éoliennes à ces endroits. Depuis quelques années, des compagnies offrent des simulations méso-échelle de vitesses de vent, basées sur divers indices environnementaux de l’endroit à évaluer. Les ingénieurs éoliens veulent savoir s’il vaut la peine de payer pour ces données simulées, donc si celles-ci peuvent être utiles lors de l’estimation de la production d’énergie éolienne et si elles pourraient être utilisées lors de la prévision de la vitesse du vent long terme. De plus, comme l’on possède des données mesurées de vitesses de vent, l’on en profitera pour tester à partir de diverses méthodes statistiques différentes étapes de l’estimation de la production d’énergie. L’on verra les méthodes d’extrapolation de la vitesse du vent à la hauteur d’une turbine éolienne et l’on évaluera ces méthodes à l’aide de l’erreur quadratique moyenne. Aussi, on étudiera la modélisation de la vitesse du vent par la distributionWeibull et la variation de la distribution de la vitesse dans le temps. Finalement, l’on verra à partir de la validation croisée et du bootstrap si l’utilisation de données méso-échelle est préférable à celle de données des stations de référence, en plus de tester un modèle où les deux types de données sont utilisées pour prédire la vitesse du vent. Nous testerons la méthodologie globale présentement utilisée par les ingénieurs éoliens pour l’estimation de la production d’énergie d’un point de vue statistique, puis tenterons de proposer des changements à cette méthodologie, qui pourraient améliorer l’estimation de la production d’énergie annuelle.
Resumo:
Cette thèse comporte trois articles dont un est publié et deux en préparation. Le sujet central de la thèse porte sur le traitement des valeurs aberrantes représentatives dans deux aspects importants des enquêtes que sont : l’estimation des petits domaines et l’imputation en présence de non-réponse partielle. En ce qui concerne les petits domaines, les estimateurs robustes dans le cadre des modèles au niveau des unités ont été étudiés. Sinha & Rao (2009) proposent une version robuste du meilleur prédicteur linéaire sans biais empirique pour la moyenne des petits domaines. Leur estimateur robuste est de type «plugin», et à la lumière des travaux de Chambers (1986), cet estimateur peut être biaisé dans certaines situations. Chambers et al. (2014) proposent un estimateur corrigé du biais. En outre, un estimateur de l’erreur quadratique moyenne a été associé à ces estimateurs ponctuels. Sinha & Rao (2009) proposent une procédure bootstrap paramétrique pour estimer l’erreur quadratique moyenne. Des méthodes analytiques sont proposées dans Chambers et al. (2014). Cependant, leur validité théorique n’a pas été établie et leurs performances empiriques ne sont pas pleinement satisfaisantes. Ici, nous examinons deux nouvelles approches pour obtenir une version robuste du meilleur prédicteur linéaire sans biais empirique : la première est fondée sur les travaux de Chambers (1986), et la deuxième est basée sur le concept de biais conditionnel comme mesure de l’influence d’une unité de la population. Ces deux classes d’estimateurs robustes des petits domaines incluent également un terme de correction pour le biais. Cependant, ils utilisent tous les deux l’information disponible dans tous les domaines contrairement à celui de Chambers et al. (2014) qui utilise uniquement l’information disponible dans le domaine d’intérêt. Dans certaines situations, un biais non négligeable est possible pour l’estimateur de Sinha & Rao (2009), alors que les estimateurs proposés exhibent un faible biais pour un choix approprié de la fonction d’influence et de la constante de robustesse. Les simulations Monte Carlo sont effectuées, et les comparaisons sont faites entre les estimateurs proposés et ceux de Sinha & Rao (2009) et de Chambers et al. (2014). Les résultats montrent que les estimateurs de Sinha & Rao (2009) et de Chambers et al. (2014) peuvent avoir un biais important, alors que les estimateurs proposés ont une meilleure performance en termes de biais et d’erreur quadratique moyenne. En outre, nous proposons une nouvelle procédure bootstrap pour l’estimation de l’erreur quadratique moyenne des estimateurs robustes des petits domaines. Contrairement aux procédures existantes, nous montrons formellement la validité asymptotique de la méthode bootstrap proposée. Par ailleurs, la méthode proposée est semi-paramétrique, c’est-à-dire, elle n’est pas assujettie à une hypothèse sur les distributions des erreurs ou des effets aléatoires. Ainsi, elle est particulièrement attrayante et plus largement applicable. Nous examinons les performances de notre procédure bootstrap avec les simulations Monte Carlo. Les résultats montrent que notre procédure performe bien et surtout performe mieux que tous les compétiteurs étudiés. Une application de la méthode proposée est illustrée en analysant les données réelles contenant des valeurs aberrantes de Battese, Harter & Fuller (1988). S’agissant de l’imputation en présence de non-réponse partielle, certaines formes d’imputation simple ont été étudiées. L’imputation par la régression déterministe entre les classes, qui inclut l’imputation par le ratio et l’imputation par la moyenne sont souvent utilisées dans les enquêtes. Ces méthodes d’imputation peuvent conduire à des estimateurs imputés biaisés si le modèle d’imputation ou le modèle de non-réponse n’est pas correctement spécifié. Des estimateurs doublement robustes ont été développés dans les années récentes. Ces estimateurs sont sans biais si l’un au moins des modèles d’imputation ou de non-réponse est bien spécifié. Cependant, en présence des valeurs aberrantes, les estimateurs imputés doublement robustes peuvent être très instables. En utilisant le concept de biais conditionnel, nous proposons une version robuste aux valeurs aberrantes de l’estimateur doublement robuste. Les résultats des études par simulations montrent que l’estimateur proposé performe bien pour un choix approprié de la constante de robustesse.
Resumo:
We consider two new approaches to nonparametric estimation of the leverage effect. The first approach uses stock prices alone. The second approach uses the data on stock prices as well as a certain volatility instrument, such as the CBOE volatility index (VIX) or the Black-Scholes implied volatility. The theoretical justification for the instrument-based estimator relies on a certain invariance property, which can be exploited when high frequency data is available. The price-only estimator is more robust since it is valid under weaker assumptions. However, in the presence of a valid volatility instrument, the price-only estimator is inefficient as the instrument-based estimator has a faster rate of convergence. We consider two empirical applications, in which we study the relationship between the leverage effect and the debt-to-equity ratio, credit risk, and illiquidity.
Inference for nonparametric high-frequency estimators with an application to time variation in betas
Resumo:
We consider the problem of conducting inference on nonparametric high-frequency estimators without knowing their asymptotic variances. We prove that a multivariate subsampling method achieves this goal under general conditions that were not previously available in the literature. We suggest a procedure for a data-driven choice of the bandwidth parameters. Our simulation study indicates that the subsampling method is much more robust than the plug-in method based on the asymptotic expression for the variance. Importantly, the subsampling method reliably estimates the variability of the Two Scale estimator even when its parameters are chosen to minimize the finite sample Mean Squared Error; in contrast, the plugin estimator substantially underestimates the sampling uncertainty. By construction, the subsampling method delivers estimates of the variance-covariance matrices that are always positive semi-definite. We use the subsampling method to study the dynamics of financial betas of six stocks on the NYSE. We document significant variation in betas within year 2006, and find that tick data captures more variation in betas than the data sampled at moderate frequencies such as every five or twenty minutes. To capture this variation we estimate a simple dynamic model for betas. The variance estimation is also important for the correction of the errors-in-variables bias in such models. We find that the bias corrections are substantial, and that betas are more persistent than the naive estimators would lead one to believe.
Resumo:
In this article it is proved that the stationary Markov sequences generated by minification models are ergodic and uniformly mixing. These results are used to establish the optimal properties of estimators for the parameters in the model. The problem of estimating the parameters in the exponential minification model is discussed in detail.
Resumo:
This paper proposes different estimators for the parameters of SemiPareto and Pareto autoregressive minification processes The asymptotic properties of the estimators are established by showing that the SemiPareto process is α-mixing. Asymptotic variances of different moment and maximum likelihood estimators are compared.
Resumo:
Global Positioning System (GPS), with its high integrity, continuous availability and reliability, revolutionized the navigation system based on radio ranging. With four or more GPS satellites in view, a GPS receiver can find its location anywhere over the globe with accuracy of few meters. High accuracy - within centimeters, or even millimeters is achievable by correcting the GPS signal with external augmentation system. The use of satellite for critical application like navigation has become a reality through the development of these augmentation systems (like W AAS, SDCM, and EGNOS, etc.) with a primary objective of providing essential integrity information needed for navigation service in their respective regions. Apart from these, many countries have initiated developing space-based regional augmentation systems like GAGAN and IRNSS of India, MSAS and QZSS of Japan, COMPASS of China, etc. In future, these regional systems will operate simultaneously and emerge as a Global Navigation Satellite System or GNSS to support a broad range of activities in the global navigation sector.Among different types of error sources in the GPS precise positioning, the propagation delay due to the atmospheric refraction is a limiting factor on the achievable accuracy using this system. The WADGPS, aimed for accurate positioning over a large area though broadcasts different errors involved in GPS ranging including ionosphere and troposphere errors, due to the large temporal and spatial variations in different atmospheric parameters especially in lower atmosphere (troposphere), the use of these broadcasted tropospheric corrections are not sufficiently accurate. This necessitated the estimation of tropospheric error based on realistic values of tropospheric refractivity. Presently available methodologies for the estimation of tropospheric delay are mostly based on the atmospheric data and GPS measurements from the mid-latitude regions, where the atmospheric conditions are significantly different from that over the tropics. No such attempts were made over the tropics. In a practical approach when the measured atmospheric parameters are not available analytical models evolved using data from mid-latitudes for this purpose alone can be used. The major drawback of these existing models is that it neglects the seasonal variation of the atmospheric parameters at stations near the equator. At tropics the model underestimates the delay in quite a few occasions. In this context, the present study is afirst and major step towards the development of models for tropospheric delay over the Indian region which is a prime requisite for future space based navigation program (GAGAN and IRNSS). Apart from the models based on the measured surface parameters, a region specific model which does not require any measured atmospheric parameter as input, but depends on latitude and day of the year was developed for the tropical region with emphasis on Indian sector.Large variability of atmospheric water vapor content in short spatial and/or temporal scales makes its measurement rather involved and expensive. A local network of GPS receivers is an effective tool for water vapor remote sensing over the land. This recently developed technique proves to be an effective tool for measuring PW. The potential of using GPS to estimate water vapor in the atmosphere at all-weather condition and with high temporal resolution is attempted. This will be useful for retrieving columnar water vapor from ground based GPS data. A good network of GPS could be a major source of water vapor information for Numerical Weather Prediction models and could act as surrogate to the data gap in microwave remote sensing for water vapor over land.
Resumo:
The thesis has covered various aspects of modeling and analysis of finite mean time series with symmetric stable distributed innovations. Time series analysis based on Box and Jenkins methods are the most popular approaches where the models are linear and errors are Gaussian. We highlighted the limitations of classical time series analysis tools and explored some generalized tools and organized the approach parallel to the classical set up. In the present thesis we mainly studied the estimation and prediction of signal plus noise model. Here we assumed the signal and noise follow some models with symmetric stable innovations.We start the thesis with some motivating examples and application areas of alpha stable time series models. Classical time series analysis and corresponding theories based on finite variance models are extensively discussed in second chapter. We also surveyed the existing theories and methods correspond to infinite variance models in the same chapter. We present a linear filtering method for computing the filter weights assigned to the observation for estimating unobserved signal under general noisy environment in third chapter. Here we consider both the signal and the noise as stationary processes with infinite variance innovations. We derived semi infinite, double infinite and asymmetric signal extraction filters based on minimum dispersion criteria. Finite length filters based on Kalman-Levy filters are developed and identified the pattern of the filter weights. Simulation studies show that the proposed methods are competent enough in signal extraction for processes with infinite variance.Parameter estimation of autoregressive signals observed in a symmetric stable noise environment is discussed in fourth chapter. Here we used higher order Yule-Walker type estimation using auto-covariation function and exemplify the methods by simulation and application to Sea surface temperature data. We increased the number of Yule-Walker equations and proposed a ordinary least square estimate to the autoregressive parameters. Singularity problem of the auto-covariation matrix is addressed and derived a modified version of the Generalized Yule-Walker method using singular value decomposition.In fifth chapter of the thesis we introduced partial covariation function as a tool for stable time series analysis where covariance or partial covariance is ill defined. Asymptotic results of the partial auto-covariation is studied and its application in model identification of stable auto-regressive models are discussed. We generalize the Durbin-Levinson algorithm to include infinite variance models in terms of partial auto-covariation function and introduce a new information criteria for consistent order estimation of stable autoregressive model.In chapter six we explore the application of the techniques discussed in the previous chapter in signal processing. Frequency estimation of sinusoidal signal observed in symmetric stable noisy environment is discussed in this context. Here we introduced a parametric spectrum analysis and frequency estimate using power transfer function. Estimate of the power transfer function is obtained using the modified generalized Yule-Walker approach. Another important problem in statistical signal processing is to identify the number of sinusoidal components in an observed signal. We used a modified version of the proposed information criteria for this purpose.
Resumo:
The average availability of a repairable system is the expected proportion of time that the system is operating in the interval [0, t]. The present article discusses the nonparametric estimation of the average availability when (i) the data on 'n' complete cycles of system operation are available, (ii) the data are subject to right censorship, and (iii) the process is observed upto a specified time 'T'. In each case, a nonparametric confidence interval for the average availability is also constructed. Simulations are conducted to assess the performance of the estimators.