Inférence robuste à la présence des valeurs aberrantes dans les enquêtes
Contribuinte(s) |
Haziza, David Duchesne, Pierre |
---|---|
Data(s) |
22/04/2016
31/12/1969
22/04/2016
23/03/2016
01/12/2015
|
Resumo |
Cette thèse comporte trois articles dont un est publié et deux en préparation. Le sujet central de la thèse porte sur le traitement des valeurs aberrantes représentatives dans deux aspects importants des enquêtes que sont : l’estimation des petits domaines et l’imputation en présence de non-réponse partielle. En ce qui concerne les petits domaines, les estimateurs robustes dans le cadre des modèles au niveau des unités ont été étudiés. Sinha & Rao (2009) proposent une version robuste du meilleur prédicteur linéaire sans biais empirique pour la moyenne des petits domaines. Leur estimateur robuste est de type «plugin», et à la lumière des travaux de Chambers (1986), cet estimateur peut être biaisé dans certaines situations. Chambers et al. (2014) proposent un estimateur corrigé du biais. En outre, un estimateur de l’erreur quadratique moyenne a été associé à ces estimateurs ponctuels. Sinha & Rao (2009) proposent une procédure bootstrap paramétrique pour estimer l’erreur quadratique moyenne. Des méthodes analytiques sont proposées dans Chambers et al. (2014). Cependant, leur validité théorique n’a pas été établie et leurs performances empiriques ne sont pas pleinement satisfaisantes. Ici, nous examinons deux nouvelles approches pour obtenir une version robuste du meilleur prédicteur linéaire sans biais empirique : la première est fondée sur les travaux de Chambers (1986), et la deuxième est basée sur le concept de biais conditionnel comme mesure de l’influence d’une unité de la population. Ces deux classes d’estimateurs robustes des petits domaines incluent également un terme de correction pour le biais. Cependant, ils utilisent tous les deux l’information disponible dans tous les domaines contrairement à celui de Chambers et al. (2014) qui utilise uniquement l’information disponible dans le domaine d’intérêt. Dans certaines situations, un biais non négligeable est possible pour l’estimateur de Sinha & Rao (2009), alors que les estimateurs proposés exhibent un faible biais pour un choix approprié de la fonction d’influence et de la constante de robustesse. Les simulations Monte Carlo sont effectuées, et les comparaisons sont faites entre les estimateurs proposés et ceux de Sinha & Rao (2009) et de Chambers et al. (2014). Les résultats montrent que les estimateurs de Sinha & Rao (2009) et de Chambers et al. (2014) peuvent avoir un biais important, alors que les estimateurs proposés ont une meilleure performance en termes de biais et d’erreur quadratique moyenne. En outre, nous proposons une nouvelle procédure bootstrap pour l’estimation de l’erreur quadratique moyenne des estimateurs robustes des petits domaines. Contrairement aux procédures existantes, nous montrons formellement la validité asymptotique de la méthode bootstrap proposée. Par ailleurs, la méthode proposée est semi-paramétrique, c’est-à-dire, elle n’est pas assujettie à une hypothèse sur les distributions des erreurs ou des effets aléatoires. Ainsi, elle est particulièrement attrayante et plus largement applicable. Nous examinons les performances de notre procédure bootstrap avec les simulations Monte Carlo. Les résultats montrent que notre procédure performe bien et surtout performe mieux que tous les compétiteurs étudiés. Une application de la méthode proposée est illustrée en analysant les données réelles contenant des valeurs aberrantes de Battese, Harter & Fuller (1988). S’agissant de l’imputation en présence de non-réponse partielle, certaines formes d’imputation simple ont été étudiées. L’imputation par la régression déterministe entre les classes, qui inclut l’imputation par le ratio et l’imputation par la moyenne sont souvent utilisées dans les enquêtes. Ces méthodes d’imputation peuvent conduire à des estimateurs imputés biaisés si le modèle d’imputation ou le modèle de non-réponse n’est pas correctement spécifié. Des estimateurs doublement robustes ont été développés dans les années récentes. Ces estimateurs sont sans biais si l’un au moins des modèles d’imputation ou de non-réponse est bien spécifié. Cependant, en présence des valeurs aberrantes, les estimateurs imputés doublement robustes peuvent être très instables. En utilisant le concept de biais conditionnel, nous proposons une version robuste aux valeurs aberrantes de l’estimateur doublement robuste. Les résultats des études par simulations montrent que l’estimateur proposé performe bien pour un choix approprié de la constante de robustesse. This thesis focuses on the treatment of representative outliers in two important aspects of surveys: small area estimation and imputation for item non-response. Concerning small area estimation, robust estimators in unit-level models have been studied. Sinha & Rao (2009) proposed estimation procedures designed for small area means, based on robustified maximum likelihood parameters estimates of linear mixed model and robust empirical best linear unbiased predictors of the random effect of the underlying model. Their robust methods for estimating area means are of the plug-in type, and in view of the results of Chambers (1986), the resulting robust estimators may be biased in some situations. Biascorrected estimators have been proposed by Chambers et al. (2014). In addition, these robust small area estimators were associated with the estimation of the Mean Square Error (MSE). Sinha & Rao (2009) proposed a parametric bootstrap procedure based on the robust estimates of the parameters of the underlying linear mixed model to estimate the MSE. Analytical procedures for the estimation of the MSE have been proposed in Chambers et al. (2014). However, their theoretical validity has not been formally established and their empirical performances are not fully satisfactorily. Here, we investigate two new approaches for the robust version the best empirical unbiased estimator: the first one relies on the work of Chambers (1986), while the second proposal uses the concept of conditional bias as an influence measure to assess the impact of units in the population. These two classes of robust small area estimators also include a correction term for the bias. However, they are both fully bias-corrected, in the sense that the correction term takes into account the potential impact of the other domains on the small area of interest unlike the one of Chambers et al. (2014) which focuses only on the domain of interest. Under certain conditions, non-negligible bias is expected for the Sinha-Rao method, while the proposed methods exhibit significant bias reduction, controlled by appropriate choices of the influence function and tuning constants. Monte Carlo simulations are conducted, and comparisons are made between: the new robust estimators, the Sinha-Rao estimator, and the bias-corrected estimator. Empirical results suggest that the Sinha-Rao method and the bias-adjusted estimator of Chambers et al (2014) may exhibit a large bias, while the new procedures offer often better performances in terms of bias and mean squared error. In addition, we propose a new bootstrap procedure for MSE estimation of robust small area predictors. Unlike existing approaches, we formally prove the asymptotic validity of the proposed bootstrap method. Moreover, the proposed method is semi-parametric, i.e., it does not rely on specific distributional assumptions about the errors and random effects of the unit-level model underlying the small-area estimation, thus it is particularly attractive and more widely applicable. We assess the finite sample performance of our bootstrap estimator through Monte Carlo simulations. The results show that our procedure performs satisfactorily well and outperforms existing ones. Application of the proposed method is illustrated by analyzing a well-known outlier-contaminated small county crops area data from North-Central Iowa farms and Landsat satellite images. Concerning imputation in the presence of item non-response, some single imputation methods have been studied. The deterministic regression imputation, which includes the ratio imputation and mean imputation are often used in surveys. These imputation methods may lead to biased imputed estimators if the imputation model or the non-response model is not properly specified. Recently, doubly robust imputed estimators have been developed. However, in the presence of outliers, the doubly robust imputed estimators can be very unstable. Using the concept of conditional bias as a measure of influence (Beaumont, Haziza and Ruiz-Gazen, 2013), we propose an outlier robust version of the doubly robust imputed estimator. Thus this estimator is denoted as a triple robust imputed estimator. The results of simulation studies show that the proposed estimator performs satisfactorily well for an appropriate choice of the tuning constant. |
Identificador | |
Idioma(s) |
fr |
Palavras-Chave | #Estimateur corrigé pour le biais #Biais conditionnel #Valeurs aberrantes #Inférence basée sur le modèle #Inférence basée sur le plan #Petits domaines #Bootstrap #Modèle linéaire mixte #Robustesse #Imputation #Corrected-bias estimator #Conditional bias #Outliers #Model-based inference #Sampling-based inference #Small-area #Linear mixed model #Robustness #Mathematics / Mathématiques (UMI : 0405) |
Tipo |
Thèse ou Mémoire numérique / Electronic Thesis or Dissertation |