976 resultados para Differential-algebraic equations
Resumo:
Activity rhythms in animal groups arise both from external changes in the environment, as well as from internal group dynamics. These cycles are reminiscent of physical and chemical systems with quasiperiodic and even chaotic behavior resulting from “autocatalytic” mechanisms. We use nonlinear differential equations to model how the coupling between the self-excitatory interactions of individuals and external forcing can produce four different types of activity rhythms: quasiperiodic, chaotic, phase locked, and displaying over or under shooting. At the transition between quasiperiodic and chaotic regimes, activity cycles are asymmetrical, with rapid activity increases and slower decreases and a phase shift between external forcing and activity. We find similar activity patterns in ant colonies in response to varying temperature during the day. Thus foraging ants operate in a region of quasiperiodicity close to a cascade of transitions leading to chaos. The model suggests that a wide range of temporal structures and irregularities seen in the activity of animal and human groups might be accounted for by the coupling between collectively generated internal clocks and external forcings.
Resumo:
In this article we analytically solve the Hindmarsh-Rose model (Proc R Soc Lond B221:87-102, 1984) by means of a technique developed for strongly nonlinear problems-the step homotopy analysis method. This analytical algorithm, based on a modification of the standard homotopy analysis method, allows us to obtain a one-parameter family of explicit series solutions for the studied neuronal model. The Hindmarsh-Rose system represents a paradigmatic example of models developed to qualitatively reproduce the electrical activity of cell membranes. By using the homotopy solutions, we investigate the dynamical effect of two chosen biologically meaningful bifurcation parameters: the injected current I and the parameter r, representing the ratio of time scales between spiking (fast dynamics) and resting (slow dynamics). The auxiliary parameter involved in the analytical method provides us with an elegant way to ensure convergent series solutions of the neuronal model. Our analytical results are found to be in excellent agreement with the numerical simulations.
Resumo:
1st European IAHR Congress,6-4 May, Edinburg, Scotland
Resumo:
The local fractional Poisson equations in two independent variables that appear in mathematical physics involving the local fractional derivatives are investigated in this paper. The approximate solutions with the nondifferentiable functions are obtained by using the local fractional variational iteration method.
Resumo:
Binary operations on commutative Jordan algebras, CJA, can be used to study interactions between sets of factors belonging to a pair of models in which one nests the other. It should be noted that from two CJA we can, through these binary operations, build CJA. So when we nest the treatments from one model in each treatment of another model, we can study the interactions between sets of factors of the first and the second models.
Resumo:
Heparin, in some regions of Brazil has been used in the treatment of bothropic accidents, but the data found in the literature are inconclusive about its effectiveness. The venoms of Bothrops atrox and of B. erythromelas were characterized according to their biological activities. The capacity of heparin in neutralizing these activities was tested with doses of 3 and 6 IU in isolated form and associated to Antibothropic Serum (ABS). It was verified that heparin, in doses of 3 and 6 IU, was not effective in neutralizing the desfibrinating and edema-forming activities of B. atrox venom and the hemorrhagic and coagulant actions of both venoms. Heparin diminished the effectiveness of the ABS in the neutralization of the hemorrhagic and edema-forming activities of the B. atrox venom. However, heparin in the 6 IU dose was capable of neutralize the edema-forming of the B. erythromelas and increase the effectiveness of the ABS. Heparin also neutralized the phospholipasic A2 activity of B. atrox (14.3%) and B. erythromelas (28.0%) venoms. For B. erythromelas venom, the associated treatment, heparin and ABS, was more effective in the neutralization of its lethal activity.
Resumo:
A biomassa é uma das fontes de energia renovável com maior potencial em Portugal, sendo a capacidade de produção de pellets de biomassa atualmente instalada superior a 1 milhão de toneladas/ano. Contudo, a maioria desta produção destina-se à exportação ou à utilização em centrais térmicas a biomassa, cujo crescimento tem sido significativo nos últimos anos, prevendo-se que a capacidade instalada em 2020 seja de aproximadamente 250 MW. O mercado português de caldeiras a pellets é bastante diversificado. O estudo que realizamos permitiu concluir que cerca de 90% das caldeiras existentes no mercado português têm potências inferiores a 60 kW, possuindo na sua maioria grelha fixa (81%), com sistema de ignição eléctrica (92%) e alimentação superior do biocombustível sólido (94%). O objetivo do presente trabalho foi o desenvolvimento de um modelo para simulação de uma caldeira a pellets de biomassa, que para além de permitir otimizar o projeto e operação deste tipo de equipamento, permitisse avaliar as inovações tecnológicas nesta área. Para tal recorreu-se o BiomassGasificationFoam, um código recentemente publicado, e escrito para utilização com o OpenFOAM, uma ferramenta computacional de acesso livre, que permite a simulação dos processos de pirólise, gasificação e combustão de biomassa. Este código, que foi inicialmente desenvolvido para descrever o processo de gasificação na análise termogravimétrica de biomassa, foi por nós adaptado para considerar as reações de combustão em fase gasosa dos gases libertados durante a pirólise da biomassa (recorrendo para tal ao solver reactingFoam), e ter a possibilidade de realizar a ignição da biomassa, o que foi conseguido através de uma adaptação do código de ignição do XiFoam. O esquema de ignição da biomassa não se revelou adequado, pois verificou-se que a combustão parava sempre que a ignição era inativada, independentemente do tempo que ela estivesse ativa. Como alternativa, usaram-se outros dois esquemas para a combustão da biomassa: uma corrente de ar quente, e uma resistência de aquecimento. Ambos os esquemas funcionaram, mas nunca foi possível fazer com que a combustão fosse autossustentável. A análise dos resultados obtidos permitiu concluir que a extensão das reações de pirólise e de gasificação, que são ambas endotérmicas, é muito pequena, pelo que a quantidade de gases libertados é igualmente muito pequena, não sendo suficiente para libertar a energia necessária à combustão completa da biomassa de uma maneira sustentável. Para tentar ultrapassar esta dificuldade foram testadas várias alternativas, , que incluíram o uso de diferentes composições de biomassa, diferentes cinéticas, calores de reação, parâmetros de transferência de calor, velocidades do ar de alimentação, esquemas de resolução numérica do sistema de equações diferenciais, e diferentes parâmetros dos esquemas de resolução utilizados. Todas estas tentativas se revelaram infrutíferas. Este estudo permitiu concluir que o solver BiomassGasificationFoam, que foi desenvolvido para descrever o processo de gasificação de biomassa em meio inerte, e em que a biomassa é aquecida através de calor fornecido pelas paredes do reator, aparentemente não é adequado à descrição do processo de combustão da biomassa, em que a combustão deve ser autossustentável, e em que as reações de combustão em fase gasosa são importantes. Assim, é necessário um estudo mais aprofundado que permita adaptar este código à simulação do processo de combustão de sólidos porosos em leito fixo.
Resumo:
We prove a one-to-one correspondence between (i) C1+ conjugacy classes of C1+H Cantor exchange systems that are C1+H fixed points of renormalization and (ii) C1+ conjugacy classes of C1+H diffeomorphisms f with a codimension 1 hyperbolic attractor Lambda that admit an invariant measure absolutely continuous with respect to the Hausdorff measure on Lambda. However, we prove that there is no C1+alpha Cantor exchange system, with bounded geometry, that is a C1+alpha fixed point of renormalization with regularity alpha greater than the Hausdorff dimension of its invariant Cantor set.
Resumo:
We prove that the stable holonomies of a proper codimension 1 attractor Λ, for a Cr diffeomorphism f of a surface, are not C1+θ for θ greater than the Hausdorff dimension of the stable leaves of f intersected with Λ. To prove this result we show that there are no diffeomorphisms of surfaces, with a proper codimension 1 attractor, that are affine on a neighbourhood of the attractor and have affine stable holonomies on the attractor.
Resumo:
The local fractional Poisson equations in two independent variables that appear in mathematical physics involving the local fractional derivatives are investigated in this paper. The approximate solutions with the nondifferentiable functions are obtained by using the local fractional variational iteration method.
Resumo:
Discussions under this title were held during a special session in frames of the International Conference “Fractional Differentiation and Applications” (ICFDA ’14) held in Catania (Italy), 23-25 June 2014, see details at http://www.icfda14.dieei.unict.it/. Along with the presentations made during this session, we include here some contributions by the participants sent afterwards and also by few colleagues planning but failed to attend. The intention of this special session was to continue the useful traditions from the first conferences on the Fractional Calculus (FC) topics, to pose open problems, challenging hypotheses and questions “where to go”, to discuss them and try to find ways to resolve.
Resumo:
A theory of free vibrations of discrete fractional order (FO) systems with a finite number of degrees of freedom (dof) is developed. A FO system with a finite number of dof is defined by means of three matrices: mass inertia, system rigidity and FO elements. By adopting a matrix formulation, a mathematical description of FO discrete system free vibrations is determined in the form of coupled fractional order differential equations (FODE). The corresponding solutions in analytical form, for the special case of the matrix of FO properties elements, are determined and expressed as a polynomial series along time. For the eigen characteristic numbers, the system eigen main coordinates and the independent eigen FO modes are determined. A generalized function of visoelastic creep FO dissipation of energy and generalized forces of system with no ideal visoelastic creep FO dissipation of energy for generalized coordinates are formulated. Extended Lagrange FODE of second kind, for FO system dynamics, are also introduced. Two examples of FO chain systems are analyzed and the corresponding eigen characteristic numbers determined. It is shown that the oscillatory phenomena of a FO mechanical chain have analogies to electrical FO circuits. A FO electrical resistor is introduced and its constitutive voltage–current is formulated. Also a function of thermal energy FO dissipation of a FO electrical relation is discussed.
Resumo:
This paper characterizes four ‘fractal vegetables’: (i) cauliflower (brassica oleracea var. Botrytis); (ii) broccoli (brassica oleracea var. italica); (iii) round cabbage (brassica oleracea var. capitata) and (iv) Brussels sprout (brassica oleracea var. gemmifera), by means of electrical impedance spectroscopy and fractional calculus tools. Experimental data is approximated using fractional-order models and the corresponding parameters are determined with a genetic algorithm. The Havriliak-Negami five-parameter model fits well into the data, demonstrating that classical formulae can constitute simple and reliable models to characterize biological structures.
Resumo:
Recently, operational matrices were adapted for solving several kinds of fractional differential equations (FDEs). The use of numerical techniques in conjunction with operational matrices of some orthogonal polynomials, for the solution of FDEs on finite and infinite intervals, produced highly accurate solutions for such equations. This article discusses spectral techniques based on operational matrices of fractional derivatives and integrals for solving several kinds of linear and nonlinear FDEs. More precisely, we present the operational matrices of fractional derivatives and integrals, for several polynomials on bounded domains, such as the Legendre, Chebyshev, Jacobi and Bernstein polynomials, and we use them with different spectral techniques for solving the aforementioned equations on bounded domains. The operational matrices of fractional derivatives and integrals are also presented for orthogonal Laguerre and modified generalized Laguerre polynomials, and their use with numerical techniques for solving FDEs on a semi-infinite interval is discussed. Several examples are presented to illustrate the numerical and theoretical properties of various spectral techniques for solving FDEs on finite and semi-infinite intervals.
Resumo:
Proceedings of the 10th Conference on Dynamical Systems Theory and Applications