935 resultados para Dark adsorptions
Resumo:
I consider theories of gravity built not just from the metric and affine connection, but also other (possibly higher rank) symmetric tensor(s). The Lagrangian densities are scalars built from them, and the volume forms are related to Cayley's hyperdeterminants. The resulting diff-invariant actions give rise to geometric theories that go beyond the metric paradigm (even metric-less theories are possible), and contain Einstein gravity as a special case. Examples contain theories with generalizeations of Riemannian geometry. The 0-tensor case is related to dilaton gravity. These theories can give rise to new types of spontaneous Lorentz breaking and might be relevant for ``dark'' sector cosmology.
Resumo:
The collapse of the primordial gas in the density regime similar to 10(8)-10(10) cm(-3) is controlled by the three-body H-2 formation process, in which the gas can cool faster than free-fall time-a condition proposed as the chemothermal instability. We investigate how the heating and cooling rates are affected during the rapid transformation of atomic to molecular hydrogen. With a detailed study of the heating and cooling balance in a 3D simulation of Pop III collapse, we follow the chemical and thermal evolution of the primordial gas in two dark matter minihalos. The inclusion of sink particles in modified Gadget-2 smoothed particle hydrodynamics code allows us to investigate the long-term evolution of the disk that fragments into several clumps. We find that the sum of all the cooling rates is less than the total heating rate after including the contribution from the compressional heating (pdV). The increasing cooling rate during the rapid increase of the molecular fraction is offset by the unavoidable heating due to gas contraction. We conclude that fragmentation occurs because H-2 cooling, the heating due to H-2 formation and compressional heating together set a density and temperature structure in the disk that favors fragmentation, not the chemothermal instability.
Resumo:
Heterostructures comprised of zinc oxide quantum dots (ZnO QDs) and graphene are presented for ultraviolet photodetectors (UV PD). Graphene-ZnO QDs-graphene (G-ZnO QDs-G) based PD demonstrated an excellent UV photoresponse with outstanding photoelastic characteristics when illuminated for several cycles with a periodicity 5 s. PD demonstrated faster detection ability with the response and recovery times of 0.29 s in response to much lower UV illumination. A direct variation in photoresponse is revealed with the bias voltage as well as UV illumination intensity. A drastic reduction in the dark current is noticed due to potential barrier formation between adjacent ZnO QDs and the recombination rate reduces by directly transferring photogenerated charge carriers from ZnO QDs to graphene for enhanced the charge mobility.
Resumo:
Photoactive metal complexes have emerged as potential candidates in the photodynamic therapy (PDT) of cancer. We present here the synthesis, characterization and visible light-triggered anticancer activity of two novel mixed-ligand oxo-bridged iron(III) complexes, viz., {Fe(L)(acac)}(2)(mu-O)](ClO4)(2) (1) and {Fe (L)(cur)}(2)(mu-O)](ClO4)(2) (2) where L is bis-(2-pyridylmethyl)-benzylamine, acac is acetylacetonate and cur is the monoanion of curcumin (bis(4-hydroxy-3-methoxyphenyl)-1,6-diene-3,5-dione). The crystal structure of complex 1 (as PF6 salt, 1a) shows distorted octahedral geometry of each iron(III) centre formed by the FeN3O3 core. The 1: 2 electrolytic complexes are stable in solution and retain their oxo-bridged identity in aqueous medium. Complex 2 has a strong absorption band in the visible region and shows promising photocytotoxicity in HeLa and MCF-7 cancer cells in visible light giving respective IC50 values of 3.1 +/- 0.4 lM and 4.9 +/- 0.5 lM while remains non-toxic in the dark (IC50 > 50 lM). The control complex 1 is inactive both in the light and dark. Complex 2 accumulates in cytoplasm of HeLa and MCF-7 cells as evidenced from fluorescence microscopy and triggers apoptotic cell death via light-assisted generation of reactive oxygen species (ROS). Taken together, complex 2 with its promising photocytotoxicity but negligible dark toxicity in cancer cells has significant photochemotherapeutic potential for applications in PDT. (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
Oxovanadium(IV) complexes of vitamin-B6 Schiff base, viz., VO(HL1/L-2/L-3)(B)] Cl (1-4), where B is 2,2'-bipyridine (bpy in 1 and 2), 11-(9-acridinyl)dipyrido3,2-a:2',3'-c]phenazine (acdppz in 3 and 4), H2L1 center dot HCl is 3-hydroxy-5-(hydroxymethyl)-4-(((2-hydroxyphenyl)imino)methyl)-2-methylp yridin-1-ium chloride (in 1 and 4), HL2 is 2-(((2-(1H-imidazol-4-yl)ethyl) imino)methyl) phenol (in 2) and HL3 is 4-(((2-(1H-imidazol-4- yl)ethyl)imino)methyl)-5-(hydroxymethyl)-2-methylpyridin-3-ol (in 3) were synthesized, characterized and their cellular uptake, photo-activated cytotoxicity and intracellular localization were studied. Complexes 1a, as the perchlorate salt of 1, and 2a, as the hexafluorophosphate salt of 2, were structurally characterized. Vitamin-B6 transporting membrane carrier (VTC) mediated entry into tumour cells in preference to the normal ones seems to be responsible for the higher cellular uptake of the complexes into HeLa and MCF-7 cells over MCF-10A cells. Complexes 3 and 4 having acdppz as the photosensitizer exhibit remarkable photocytotoxicity in these cancer cells giving IC50 of < 0.9 mu M. The complexes remain non-toxic in the dark. The complexes show photo-induced apoptotic cell death via singlet oxygen (O-1(2)) generation. Fluorescence microscopy reveals specific localization of complex 4 to endoplasmic reticulum (ER) and generation of O-1(2) possibly leads to apoptotic cell death by triggering ER stress response (ERSR).
Resumo:
Lanthanide complexes Ln(DTPAAQ)(DMF)] (1-3) (Ln - Pr (1), Eu (2), Tb (3), H(3)DTPAAQ - N, N `'-bis(3-amidoquinolyl) diethylenetriamine-N, N', N `'-triacetic acid, DMF - N, N-dimethylformamide) were studied for their structures, photophysical properties, DNA and protein binding, DNA photocleavage, photocytotoxicity and cellular internalization. The crystal structures of complexes Ln(DTPAAQ)(DMF)] (1-3) display a discrete mononuclear nine-coordinate {LnN(3)O(6)} tricapped-trigonal prism (TTP) coordination geometry. The europium and terbium complexes show strong luminescence properties in the visible region having a long luminescence lifetime (tau = 0.51-0.64 ms). The conjugated 3-aminoquinoline moieties act as efficient light harvesting antennae, which upon photoexcitation transfer their energy to Eu(III) or Tb(III) for their characteristic D-5(0) -> F-7(J) or D-5(4) -> F-7(J) f-f transitions respectively. The complexes display efficient binding affinity to DNA (K-b = 3.4 x 10(4) - 9.8 x 10(4) M-1) and BSA (KBSA = 3.03 x 10(4) - 6.57 x 10(4) M-1). Europium and terbium complexes give enhanced luminescence upon interacting with CT-DNA suggesting possible luminescence-based sensing applications for these complexes. Complexes 1-3 show moderate cleavage of supercoiled (SC) DNA to its nicked circular (NC) form on exposure to UV-A light of 312 nm involving formation of singlet oxygen (O-1(2)) and hydroxyl radicals (cOH) in type-II and photoredox pathways. Eu(III) and Tb(III) complexes exhibit remarkable photocytotoxicity with human cervical cancer cell line (HeLa) (IC50 = 20.7-28.5 mM) while remaining essentially noncytotoxic up to 150 mM in the dark. Complexes are nontoxic in nature thus suitable for designing cellular imaging agents. Fluorescence microscopy data reveal primarily cytosolic localization of the Eu(III) and Tb(III) complexes in HeLa cells.
Resumo:
Oxovanadium(IV) complexes of vitamin-B6 Schiff base, viz., VO(HL1/L-2/L-3)(B)] Cl (1-4), where B is 2,2'-bipyridine (bpy in 1 and 2), 11-(9-acridinyl)dipyrido3,2-a:2',3'-c]phenazine (acdppz in 3 and 4), H2L1 center dot HCl is 3-hydroxy-5-(hydroxymethyl)-4-(((2-hydroxyphenyl)imino)methyl)-2-methylp yridin-1-ium chloride (in 1 and 4), HL2 is 2-(((2-(1H-imidazol-4-yl)ethyl) imino)methyl) phenol (in 2) and HL3 is 4-(((2-(1H-imidazol-4- yl)ethyl)imino)methyl)-5-(hydroxymethyl)-2-methylpyridin-3-ol (in 3) were synthesized, characterized and their cellular uptake, photo-activated cytotoxicity and intracellular localization were studied. Complexes 1a, as the perchlorate salt of 1, and 2a, as the hexafluorophosphate salt of 2, were structurally characterized. Vitamin-B6 transporting membrane carrier (VTC) mediated entry into tumour cells in preference to the normal ones seems to be responsible for the higher cellular uptake of the complexes into HeLa and MCF-7 cells over MCF-10A cells. Complexes 3 and 4 having acdppz as the photosensitizer exhibit remarkable photocytotoxicity in these cancer cells giving IC50 of < 0.9 mu M. The complexes remain non-toxic in the dark. The complexes show photo-induced apoptotic cell death via singlet oxygen (O-1(2)) generation. Fluorescence microscopy reveals specific localization of complex 4 to endoplasmic reticulum (ER) and generation of O-1(2) possibly leads to apoptotic cell death by triggering ER stress response (ERSR).
Resumo:
An iron(III) salicylate having a dipicolylamine base (andpa) with a photoactive anthracenyl moiety is prepared, characterized, and studied for its photo-induced anticancer activity and cellular localization in HeLa and MCF-7 cells. Its phenyl analogue is structurally characterized by X-ray crystallography. The complex has a ternary structure in which the dipicolylamine ligand and salicylic acid in dianionic form (sal) display respective tridentate and bidentate mode of coordination in Fe(sal)(phdpa)Cl] (1). Complex Fe(sal)(andpa)Cl] (2) having a pendant anthracenyl moiety shows significant photocytotoxicity in visible light (400-700 nm) giving IC50 values of 8.6 +/- 0.7 and 3.4 +/- 0.9 mu M in HeLa and MCF-7 cells, while being essentially nontoxic in the dark (IC50 > 100 mu M). The complex shows cytosolic localization in the cancer cells. Formation of hydroxyl radicals ((OH)-O-center dot) as the reactive oxygen species is evidenced from the pUC19 DNA photocleavage studies. (C) 2015 Elsevier Ltd. All rights reserved.
Resumo:
Self-assembled InN quantum dots (QDs) were grown on Si(111) substrate using plasma assisted molecular beam epitaxy (PA-MBE). Single-crystalline wurtzite structure of InN QDs was confirmed by X-ray diffraction. The dot densities were varied by varying the indium flux. Variation of dot density was confirmed by FESEM images. Interdigitated electrodes were fabricated using standard lithography steps to form metal-semiconductor-metal (MSM) photodetector devices. The devices show strong infrared response. It was found that the samples with higher density of InN QDs showed lower dark current and higher photo current. An explanation was provided for the observations and the experimental results were validated using Silvaco Atlas device simulator.
Resumo:
In-situ dark and light IV characteristics of inverted P3HT-PCBM devices on flexible glass substrates were measured while bending. Bending set up was simple and home built with servo controlled 2 parallel plate movements. ITO was sputter coated onto the thin flexible glass sheets of 25mmx25mm size in the lab. OPV devices were fabricated inside the glove box and conversion efficiency measured was about 2.8%. Bending of the device substrates and simultaneous PV measurements were carried out in ambient conditions. It was observed that the J(SC) and efficiency increased until the substrate breaking point but the V-OC and fill factor remained unchanged.
Resumo:
The Cu2SnS3 thin films were deposited using an economic, solution processible, spin coating technique. The films were found to possess a tetragonal crystal structure using X-ray diffraction. The film morphology and the particle size were determined using scanning electron microscopy. The various planes in the crystal were observed using transmission electron microscopy. The optimum band gap of 1.23 eV and a high absorption coefficient of 104 cm-1 corroborate its application as a photoactive material. The visible and infrared (IR) photo response was studied for various illumination intensities. The current increased by one order from a dark current of 0.31 mu A to a current of 1.78 mu A at 1.05 suns and 8.7 mu A under 477.7 mW/cm(2) IR illumination intensity, at 3 V applied bias. The responsivity, sensitivity, external quantum efficiency and specific detectivity were found to be 10.93 mA/W, 5.74, 2.47% and 3.47 x 10(10) Jones respectively at 1.05 suns and 16.32 mA/W, 27.16, 2.53% and 5.10 x 10(10) Jones respectively at 477.7 mW/cm(2) IR illumination. The transient photoresponse was measured both for visible and IR illuminations. (C) 2016 Author(s).
Resumo:
Ternary copper(Il) complexes of salicylaldehyde-histamine Schiff base (HL) and pyridyl ligands, viz. Cu(bpy)(L)](ClO4) (1) and Cu(dppz)(L)](C104) (2), where bpy is 2,2'-bipyridine (in 1) and dppz is dipyrido3,2-a:2',3'-c]phenazine (in 2), were synthesized, characterized and their DNA binding, photo-activated DNA cleavage activity and photocytotoxicity studied. The 1:1 electrolytic one-electron paramagnetic complexes showed a d-d band near 670 nm in aqueous DMF (1:1 v/v). The crystal structure of complex 1 showed the metal in CuN4O distorted square-pyramidal geometry. Complex 2 intercalatively binds to calf-thymus (ct) DNA with a binding constant (K-b) of similar to 10(5) M-1. It exhibited moderate chemical nuclease activity but excellent DNA photocleavage activity in red light of 647 nm forming (OH)-O-center dot radicals. It showed remarkable photocytotoxicity in human cervical cancer cells (HeLa) giving IC50 of 1.6 mu M in visible light (400-700 nm) with low dark toxicity. The photo-induced cell death is via generation of oxidative stress by reactive oxygen species.
Resumo:
In the context of the minimal supersymmetric standard model (MSSM), we discuss the possibility of the lightest Higgs boson with mass M-h = 98 GeV to be consistent with the 2.3 sigma excess observed at the LEP in the decay mode e(+)e(-) -> Zh, with h -> b (b) over bar. In the same region of the MSSM parameter space, the heavier Higgs boson (H) with mass M-H similar to 125 GeV is required to be consistent with the latest data on Higgs coupling measurements at the end of the 7 + 8 TeV LHC run with 25 fb(-1) of data. While scanning the MSSM parameter space, we impose constraints coming from flavor physics, relic density of the cold dark matter as well as direct dark matter searches. We study the possibility of observing this light Higgs boson in vector boson fusion process and associated production with W/Z-boson at the high luminosity (3000 fb(-1)) run of the 14 TeV LHC. Our analysis shows that this scenario can hardly be ruled out even at the high luminosity run of the LHC. However, the precise measurement of the Higgs signal strength ratios can play a major role to distinguish this scenario from the canonical MSSM one.
Resumo:
A series of four novel neodymium(III) complexes of the formulation Nd(R-tpy)(O-O)(NO3)(2)] (1-4), where R-tpy is 4'-phenyl-2,2': 6', 2''-terpyridine (Ph-tpy; 1, 2) and 4'-ferrocenyl-2,2': 6', 2''-terpyridine (Fc-tpy; 3, 4); O-O is the conjugate base of acetylacetone (Hacac; 1, 3) or curcumin (Hcurc; 2, 4), are synthesized and characterized. The single crystal structure of 1 shows that the complex is a discrete mononuclear species with the Nd(III) centre in a nine coordinate environment provided by a set of O6N3 donor atoms. Complexes 1 and 3 having the simple acac ligand are prepared as control compounds. Complex 4, possessing an appended ferrocenyl (Fc) and the curcumin moiety, is remarkably photocytotoxic to HeLa and MCF-7 cancer cells in visible light giving respective IC50 values of 0.7 mu M and 2.1 mu M while being significantly less toxic to MCF-10A normal cells (IC50 = 34 mu M) and in the dark (IC50 > 50 mu M). The phenyl appended complex 2, lacking a ferrocenyl moiety, is significantly less toxic to both the cell lines when compared with 4. Complexes 1 and 3, lacking the photoactive curcumin moiety, do not show any apparent toxicity both in light and in the dark. The cell death is apoptotic in nature and is mediated by the light-induced formation of reactive oxygen species (ROS). Fluorescence imaging experiment with HeLa cells reveals mitochondrial accumulation of complex 4 within 4 h of incubation. The complexes bind to calf thymus (ct) DNA with moderate affinity giving K-b values in the range of 10(4)-10(5) M-1. The curcumin complexes 2 and 4 cleave plasmid supercoiled DNA to its nicked circular form in visible light via O-1(2) and (OH)-O-center dot pathways. The presence of the ferrocenyl moiety is likely to be responsible for the enhanced cellular uptake and photocytotoxicity of complex 4. Thus, the mitochondria targeting complex 4, being remarkably cytotoxic in light but non-toxic in the dark and to normal cells, is a potential candidate for photochemotherapeutic applications.
Resumo:
Multi-walled carbon nanotubes (MWNTs) have been proposed for use in many applications and concerns about their potential effect on human health have led to the interest in understanding the interactions between MWNTs and human cells. One important technique is the visualisation of the intracellular distribution of MWNTs. We exposed human macrophage cells to unpurified MWNTs and found that a decrease in cell viability was correlated with uptake of MWNTs due to mainly necrosis. Cells treated with purified MWNTs and the main contaminant Fe(2)O(3) itself yielded toxicity only from the nanotubes and not from the Fe(2)O(3). We used 3-D dark-field scanning transmission electron microscopy (DF-STEM) tomography of freeze-dried whole cells as well as confocal and scanning electron microscopy (SEM) to image the cellular uptake and distribution of unpurified MWNTs. We observed that unpurified MWNTs entered the cell both actively and passively frequently inserting through the plasma membrane into the cytoplasm and the nucleus. These suggest that MWNTs may cause incomplete phagocytosis or mechanically pierce through the plasma membrane and result in oxidative stress and cell death.