944 resultados para DRUG TARGETS
Resumo:
The interaction of daunomycin with sodium dodecyl sulfate and Triton X-100 micelles was investigated as a model for the hydrophobic contribution to the free energy of DNA intercalation reactions. Measurements of visible absorbance, fluorescence lifetime, steady-state fluorescence emission intensity, and fluorescence anisotropy indicate that the anthraquinone ring partitions into the hydrophobic micelle interior. Fluorescence quenching experiments using both steady-state and lifetime measurements demonstrate reduced accessibility of daunomycin in sodium dodecyl sulfate micelles to the anionic quencher iodide and to the neutral quencher acrylamide. Quenching of daunomycin fluorescence by iodide in Triton X-100 micelles was similar to that seen with free daunomycin. Studies of the energetics of the interaction of daunomycin with micelles by fluorescence and absorbance titration methods and by isothermal titration calorimetry in the presence of excess micelles revealed that association with sodium dodecyl sulfate and Triton X-100 micelles is driven by a large negative enthalpy. Association of the drug with both types of micelles also has a favorable entropic contribution, which is larger in magnitude for Triton X-100 micelles than for sodium dodecyl sulfate micelles.
Resumo:
A new technique for investigating drug-protein binding was developed employing capillary electrophoresis (CE) coupled with tris(2,2'-bipyridyl) ruthenium(II) [Ru(bPY)(3)(2+)] electrochemiluminescence (ECL) (CE-ECL) detection after equilibrium dialysis. Three basic drugs, namely pridinol, procyclidine and its analogue trihexyphenidyl, were successfully separated by capillary zone electrophoresis with end-column Ru(bPY)(3)(2+) ECL detection. The relative drug binding to human serum albumin (HSA) for each single drug as well'as for the three drugs binding simultaneously was calculated. It was found that the three antiparkinsonian drugs compete for the same binding site on HSA. This work demonstrated that Ru(bPY)(3)(2+) CE-ECL can be a suitable technique for studying drug-protein binding.
Resumo:
The influences of surfactants and medical drugs on the diameter size and uniformity of electrospun poly(L-lactic acid) (PLLA) fibers were examined by adding various surfactants (cationic, anionic, and nonionic) and typical drugs into the PLLA solution. Significant diameter reduction and uniformity improvement were observed. It was shown that the drugs were capsulated inside of the fibers and the drug release in the presence of proteinase K followed nearly zero-order kinetics due to the degradation of the PLLA fibers. Such ultrafine fiber mats containing drugs may find clinical applications in the future.
Resumo:
Zebrafish has been generally considered as an excellent model in case of drug screening, disease model establishment, and vertebrate embryonic development study. In this work, the ability of human cytomegalovirus immediate early promoter (CMV promoter)-driven short hairpin RNA (shRNA) expression vector to induce shRNA against VEGF gene in zebrafish was tested, and its effect on vascular development was assed, too. Using RT-qPCR, blood vessel staining, and in situ hybridization, we confirmed certain transcriptional activity and down regulation of gene expression by the vector. In situ hybridization analysis indicated selective inhibition of NRP1 expression in the VEGF gene loss of function model, which might imply in turn that VEGF could not only activate endothelial cells directly but also could contribute to stimulating angiogenesis in vivo by a mechanism that involved up-regulation of its cognate receptor expression in zebrafish. This contributed to a better understanding of molecular mechanisms of cardiovascular development. The system improved the success rate in making inducible knockdown and widened the possibilities for better therapeutic targets in zebrafish.
Resumo:
海带根是一种治疗糖尿病的民间中药,在沿海地区有很长的民间用药历史。食用海带根能够有效降低糖尿病患者的血糖,起到治疗作用。本文目的在于发现海带根中抗糖尿病的天然活性物质并分析它们在糖尿病治疗中的靶点;进一步开发一种低价且无毒副作用的化学类新药或中药新药。 α-glucosidase和 PTP-1B是II型糖尿病的两个重要靶点,海带根提取物能同时作用于这两个靶点。通过抑制这两种酶,降低血糖水平,85%乙醇粗提物对两种酶的IC50分别为1589ug/ml、IC50 1271ug/ml。乙酸乙酯相和石油醚相分别抑制α-glucosidase和 PTP-1B,IC50分别为380ug/ml和220ug/ml。因此以α-glucosidase和 PTP-1B的抑制活性为导向,用天然产物化学的方法对活性成分进行追踪分离,寻找单体活性物质进而鉴定其结构。由于乙酸乙酯相具有α-glucosidase抑制活性,用硅胶柱层析(石油醚:丙酮5:1、1:1),(二氯甲烷:甲醇60:1、20:1、5:1),凝胶柱层析Sephadex LH20(二氯甲烷:甲醇1:1),HPLC (80% 甲醇-水),对α-glucosidase抑制剂进行分离,得到组分IC50 为3.6ug/ml。用质谱仪和核磁共振确定结构。 生物活性测定结果表明α-glucosidase和 PTP-1B是两种不同的物质,分别位于乙酸乙酯相和石油醚相。光照实验和高温实验表明抑制α-glucosidase的活性成分对光照和温度敏感。光照48h或者50℃ 12h而且对α-glucosidase的抑制活性显著降低,TLC检测并用FeCl3显色初步表明抑制α-glucosidase的活性成分可能是多数酚类物质。动物实验显示在1450ug/kg剂量下,乙酸乙酯相能够显著降低糖尿病小鼠血糖,与阴性对照组差异极显著(P<0.01)。表明,海带根提取物在体内和体外均呈现出抗糖尿病活性,是一种潜在的抗糖尿病药物。
Resumo:
A rapid and sensitive liquid chromatography-atmospheric pressure chemical ionization mass spectrometry (HPLC-APCI-MS) assay for the determination of five pharmacologically active compounds (PAC) extracted from the traditional Chinese medicine, Rhodiola , namely salidroside, tyrosol, rhodionin, gallic acid, and ethyl gallate has been developed. In this method, PAC could be baseline separated and detected with DAD at 275 nm. The validation of the method, including sensitivity, linearity, repeatability, and recovery, was examined. The linear calibration curves were acquired with correlation coefficient >0.999 and the limits of detection LOD (at a signal-to-noise ratio=3:1) were between 0.058 and 1.500 mu mol/L. It was found, that the amounts of PAC varied with different species of Rhodiola . The established method is rapid and reproducible for the separation of five natural pharmacologically active compounds from extracts of Rhodiola with satisfactory results.
Resumo:
A rapid capillary electrophoresis method for the separation of five natural pharmacologically active compounds from extracted Rhodiola, namely salidroside, tyrosol, rhodionin, gallic acid and ethyl gallate has been developed. The separation of five natural pharmacologically active compounds was carried out in a fused-silica capillary with 14 mM boric acid, 30 mM SDS and 2.5% acetonitrile, adjusted to pH 10.7 with NaOH. Applied potential was 21 kV. The temperature of the capillary was maintained at 25 degreesC by the instrument thermostating system, with the correlation coefficients of 0.9805-0.9989 for migration time, and relative standards of < 3.52% for peak areas. The established method is rapid and reproducible for the separation of five natural pharmacologically compounds from extracts of Rhodiola with satisfactory results.
Resumo:
Drug-protein binding is an important process in determining the activity and fate of a pharmaceutical agent once it has entered the body. This review examines the method of microdialysis combined with high-performance liquid chromatography (HPLC) that has been developed;by ours to study such interactions, in which the microdialysis was applied to sample the free drug in the mixed solution of drug with protein, and HPLC to quantify the concentration of free drug in the microdialysate. This technique has successfully been used for determining various types of binding interactions between the low affinity drugs, high affinity drugs and enantiomers to HSA. For the case of competitive binding of two drugs to a protein in solution, a displacement equation has been derived and examined with four nonsteroidal anti-inflammatory drugs and HSA as model drugs and protein, respectively. Microdialysis with HPLC was adopted to determine simultaneously the free solute and displacing agent in drug-protein solutions. The method is able to locate the binding site and determine affinity constants even up to 10(7) L/mol accurately.
Resumo:
The interaction between drugs and human serum albumin (HSA) was investigated by capillary electrophoresis (CE). It involves stereoselectivity, drug displacement and synergism effects. Under protein-drug binding equilibrium, the unbound concentrations of drug enantiomers were measured by frontal analysis (FA). The stereoselectivity of verapamil (VER) binding to HSA was proved by the different free fractions of two enantiomers. In physiological pH (7.4, ionic strength 0.17 phosphate buffer) when 300 mu M (+/-) VER were equilibrated with 500 mu M HSA, the concentration of unbound S-VER was about 1.7 times its antipode. The binding constants of two enantiomers, KR-VER and KS-VER, were 2670 and 850 M-1, respectively. However, no obvious stereoselective binding of propranolol (PRO) to HSA was observed. Trimethyl-beta-cyclodextrin (45 mM) was used as a chiral selector in pH 2.5 phosphate buffer. Several drug systems were studied by the method. When ibuprofen (IBU) was added into VER-HSA solution. R-VER was partially displaced while S-VER was not displaced at all. A binding synergism effect between bupivacaine (BUP) and verapamil was observed and further study suggested that verapamil and bupivacaine occupy different binding site of HSA (site II and site III, respectively).
Resumo:
Based on the chiral separation of several basic drugs, dimetindene, tetryzoline, theodrenaline and verapamil, the liquid pre-column capillary electrophoresis (LPC-CE) technique was established. It was used to determine free concentrations of drug enantiomers in mixed solutions with human serum albumin (HSA). To prevent HSA entering the CE chiral separation zone, the mobility differences between HSA and drugs under a specific pH condition were employed in the LPC. Thus, the detection confusion caused by protein was totally avoided. Further study of binding constants determination and protein binding competitions was carried out. The study proves that the LPC technique could be used for complex media, particularly the matrix of protein coexisting with a variety of drugs.