999 resultados para DIPOLE MODE
Resumo:
A passively mode-locked all-solid-state YVO4/Nd:YVO4 composite crystal laser was realized with a low temperature (LT) In0.25Ga0.75As semiconductor saturable absorber mirror. The saturable absorber was used as nonlinear absorber and output coupler simultaneously. Both the Q-switch and continous-wave mode locking operation were experimentally realized. At a pump power of 4 W, the Q-switched mode locking changed to continuous wave mode locking. An average output power of 4.1 W with 5 ps pulse width was achieved at the pump power of 12 W, corresponding to an optical-optical conversion efficiency of 34.2%.
Resumo:
In this article, the single mode operation of a Fabry-Perot laser (FP-LD) subject to the optical injection from a tunable laser is investigated. The maximum side mode suppression ratio (SMSR) is 53 dB, and the locked wavelength range is about 46 nm, which can cover 58 International Telecommunication Union (ITU) wavelengths with 100 GHz spacing or 115 ITU wavelengths with 50 GHz spacing for wavelength division multiplexing (WDM) system. In the wavelength range front 1535 to 1569 nm, the SMSR is over 46 dB, and the frequency response of the injection-locked FP-LD can be improved with the proper wavelength detuning. (c) 2008 Wiley Periodicals, Inc.
Resumo:
We grow InN epilayers on different interlayers by metal organic vapour phase epitaxy (MOVPE) method, and investigate the effect of interlayer on the properties and growth mode of InN films. Three InN samples were deposited on nitrided sapphire, low-temperature InN (LT-InN) and high-temperature GaN (HT-GaN), respectively. The InN layer grown directly on nitrided sapphire owns the narrowest x-ray diffraction rocking curve (XRC) width of 300 arcsec among the three samples, and demonstrates a two-dimensional (2D) step-flow-like lateral growth mode, which is much different from the three-dimensional (3D) pillar-like growth mode of LT-InN and HT-GaN buffered samples. It seems that mismatch tensile strain is helpful for the lateral epitaxy of InN film, whereas compressive strain promotes the vertical growth of InN films.
Resumo:
A diode-pumped Nd:GdVO4 laser mode-locked by a semiconductor saturable absorber and output coupler (SESAOC) is passively stabilized to suppress Q-switched mode-locking. A phase mismatched 131130 second-harmonic generation (SHG) crystal is used for passive stabilization. The continuous wave mode-locking (CWML) threshold is reduced and the pulse width is compressed. The pulse width is 6.5 ps as measured at the repetition rate of 128 MHz. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
In this letter, we have demonstrated continuous-wave single-mode operation of 1.3-mu m InAs-GaAs quantum-dot (QD) vertical-cavity surface-emitting lasers (VCSELs) with p-type modulation-doped QD active region from 20 degrees C to 60 degrees C. The highest output power of 0.435mW and lowest threshold current of 1.2 mA under single-mode operation are achieved. The temperature-dependent output characteristics of QD-VCSELs are investigated. Single-mode operation with a sidemode suppression ratio of 34 dB is observed at room temperature. The critical size of oxide aperture for single-mode operation is discussed.
Resumo:
The interface dipole and its role in the effective work function (EWF) modulation by Al incorporation are investigated. Our study shows that the interface dipole located at the high-k/SiO2 interface causes an electrostatic potential difference across the metal/high-k interface, which significantly shifts the band alignment between the metal and high-k, consequently modulating the EWF. The electrochemical potential equalization and electrostatic potential methods are used to evaluate the interface dipole and its contribution. The calculated EWF modulation agrees with experimental data and can provide insight to the control of EWF in future pMOS technology.
Resumo:
The generation of passively Q-switched mode-locking operation with 100% modulation depth has been observed from a diode-pumped Nd GdVO4 laser with a low temperature In0.25Ga0.75As saturable absorber, which was grown by the metal-organic chemical-vapor deposition technique and acted as saturable absorber as well as output coupler. The repetition rate and pulse duration of the mode-locked pulses concentrated in the Q-switch envelop were 455 MHz and 12 ps, respectively. The average output power was 1.8 W and the slope efficiency was 36%. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
A fundamental mode Nd YAG laser is experimentally demonstrated with a stagger pumped laser module and a special resonator. The rod is pumped symmetrically by staggered bar modules. A dynamic fundamental mode is achieved with the special resonator under different pump levels. A maximal continuous wave output of 61 W (M-2 = 1.4) is achieved with a single rod. An average output of 47 W, pulse width of 54 ns, pulse energy of 4.7 mJ and peak power of 87 kW are obtained under the Q-switched operation of 10 kHz.
Resumo:
A diode-pumped passively mode-locked Nd YVO4 laser with a five-mirror folded cavity is presented by using a semiconductor saturable absorber mirror (SESAM). The temperature distribution and thermal lensing in laser medium are numerically analyzed to design a special cavity which can keep the power density on SESAM under its damage threshold. Both the Q-switched and continuous-wave mode-locked operation are experimentally realized. The maximum average output power of 8.94 W with a 9.3 ps pulse width at a repetition rate of 111 MHz is obtained under a pump power of 24 W, correspondingly the optical slope efficiency is 39.2%. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
We obtained continuous wave mode-locked Nd-GdVO4-KTP laser with a SESAM. This is the first report of CW mode-locked Nd GdVO4-KTP laser with a SESAM to our knowledge. 396mw CW mode-locked pulse is achieved at the incident power of 7.653 W, with the repetition about 95 MHz. The pulse duration is assumed to be 5.5 ps, this is the shortest green pulse of 532 nm with SESAM. (c) 2009 by Astro Ltd. Published exclusively by WLLEY-VCH Verlag GmbH & Co. KGaA
Resumo:
A diode-pumped passively mode-locked YVO4/Nd YVO4 composite crystal green laser with a semiconductor saturable absorber mirror (SESAM) and a intracavity frequency-doubling KTP crystal was realized. The maximum average output power of 2.06 W at 532 nm with a repetition rate of 100 MHz was obtained at a pump power of 15 W, corresponding to optical slop efficiency 17.2%. The 532 nm mode-locked pulse width was estimated to be approximately 18-ps.
Resumo:
The mode characteristics of SOI (silicon-on-insulator) submicron rib waveguides are very different from those of micrometer-sized ones. Using the full-vector film mode matching method, we propose a simple criterion to determine whether a waveguide mode is guided or not. The single-mode condition for deep-etched waveguides is obtained using this criterion. We also obtain the inherent TM mode leakage and sharp cancelation effects due to TE-TM mode coupling in shallow-etched rib waveguides from numerical simulations, which agree well with the analytical results based on total internal reflection and interference theories.
Resumo:
Mode coupling between the whispering-gallery modes (WGMs) is numerically investigated for a two-dimensional microdisk resonator with an output waveguide. The equilateral-polygonal shaped mode patterns can be constructed by mode coupling in the microdisk, and the coupled modes can still keep high quality factors (Q factors). For a microdisk with a diameter of 4.5 mu m and a refractive index of 3.2 connected to a 0.6-mu m-wide output waveguide, the coupled mode at the wavelength of 1490 nm has a Q factor in the order of 10(4), which is ten times larger than those of the uncoupled WGMs, and the output efficiency defined as the ratio of the energy flux confined in the output waveguide to the total radiation energy flux is about 0.65. The mode coupling can be used to realize high efficiency directional-emission microdisk lasers. (C) 2009 Optical Society of America
Resumo:
Mode characteristics for equilateral triangles, squares, and hexagonal resonators with a center hole are numerically simulated by the finite-different time domain (FDTD) technique. The center hole does not break the symmetry behavior of the original resonators and can result in modification of the mode field patterns and mode Q factors. In an equilateral triangle resonator the center hole can suppress the symmetry state of degenerate states with the merit of single mode operation. In a square resonator, the Q factor can be enhanced for some modes with a suitable size of the hole. For a hexagonal resonator with a side length of 1 mu m and a refractive index of 3.2, the mode Q factors first gradually decrease with the increase of the hole diameter for modes at a wavelength of about 1500 nm, then the modes transform to that of a microdisk with a jump of the mode wavelength as the hole diameter approaches 0.7 mu m. Finally, the mode Q factors greatly enhance as the hole diameter reaches about 1 mu m. The results indicate that the center hole can greatly modify mode characteristics, especially that of the mode Q factor. (C) 2009 Optical Society of America
Resumo:
Mode characteristics are analyzed for electrically injected equilateral-triangle-resonator (ETR) semiconductor microlasers, which are laterally confined by insulating barrier SiO2 and electrode metals Ti-Au. For the ETR without metal layers, the totally confined mode field patterns are derived based on the reflection phase shifts, and the Q-factors are calculated from the far-field emission of the analytical near field distribution, which are agreement very well with the numerical results of the finite-difference time-domain (FDTD) simulation. The polarization dependence reflections for light rays incident on semiconductor-SiO2 -Ti-Au multi-layer structures are accounted in considering the confinement of TE and TM modes in the ETR with the metal layers. The reflectivity will greatly reduce with a Ti layer between SiO2 and Au for light rays with incident angle less than 30 especially for the TE mode, even the thickness of the Ti layer is only 10 nm. If the ETR is laterally confined by SiO2-Au layers without the Ti layer, the Fabry-Perot type modes with an incident angle of zero on one side of the ETR can also have high Q-factor. The FDTD simulation for the ETR confined by metal layers verifies the above analysis based on multi-layer reflections. The output spectra with mode intervals of whispering-gallery modes and Fabry-Perot type modes are observed from different ETR lasers with side length of 10 m, respectively.