971 resultados para Cytoplasmic enzymes
Resumo:
The effects of aluminum (Al) on the activities of antioxidant enzymes and ferritin expression were studied in cell suspension cultures of two varieties of Coffea arabica, Mundo Novo and Icatu, in medium with pH at 5.8. The cells were incubated with 300 µM Al3+, and the Al speciation as Al3+ was 1.45% of the mole fraction. The activities of superoxide dismutase (SOD), catalase (CAT), and glutathione S-transferase (GST) were increased in Mundo Novo, whereas glutathione reductase (GR) and guaiacol peroxidase (GPOX) activities remained unchanged. SOD, GR, and GST activities were increased in Icatu, while CAT activity was not changed, and GPOX activity decreased. The expression of two ferritin genes (CaFer1 and CaFer2) were analyzed by Real-Time PCR. Al caused a downregulation of CaFER1 expression and no changes of CaFER2 expression in both varieties. The Western blot showed no alteration in ferritin protein levels in Mundo Novo and a decrease in Icatu. The differential enzymes responses indicate that the response to Al is variety-dependent.
Resumo:
Type II 3β-hydroxysteroid dehydrogenase/Δ5-Δ4-isomerase (3β-HSD2), encoded by the HSD3B2 gene, is a key enzyme involved in the biosynthesis of all the classes of steroid hormones. Deleterious mutations in the HSD3B2 gene cause the classical deficiency of 3β-HSD2, which is a rare autosomal recessive disease that leads to congenital adrenal hyperplasia (CAH). CAH is the most frequent cause of ambiguous genitalia and adrenal insufficiency in newborn infants with variable degrees of salt losing. Here we report the molecular and structural analysis of the HSD3B2 gene in a 46,XY child, who was born from consanguineous parents, and presented with ambiguous genitalia and salt losing. The patient carries a homozygous nucleotide c.665C>A change in exon 4 that putatively substitutes the proline at codon 222 for glutamine. Molecular homology modeling of normal and mutant 3β-HSD2 enzymes emphasizes codon 222 as an important residue for the folding pattern of the enzyme and validates a suitable model for analysis of new mutations.
Resumo:
A case of neuronal ceroid-lipofuscinosis (NCL) is reported in a 11-year-old girl, whose main symptoms were progressive dementia since the age of 4 years and choreic movements since age 10. Seizures, myoclonus and visual deterioration were absent and optic fundi were normal. A cerebral biopsy disclosed two basic types of stored substance in the cytoplasm of neurons: a) severely balloned nerve cells in cortical layers HI and V contained a non-autofluorescent material, which stained with PAS and Sudan Black B in frozen, but not in paraffin sections; ultrastructurally, these neurons showed abundant corpuscles similar to the membranous cytoplasmic bodies of Tay-Sachs disease and, in smaller amounts, also zebra bodies; b) slightly distended or non-distended neurons in all layers contained lipopigment granules, which were autofluorescent, PAS-positive and sudanophil in both frozen and paraffin sections; their ultrastructure was closely comparable to that of lipofuscin. Similar bodies were found in the swollen segments of axons and in a few astrocytes and endothelial cells. The histochemical and ultrastructural demonstration of large amounts of lipopigments allows a presumptive classification of the case as NCL. However, the presence of involuntary movements, the absence of visual disturbances and the unusual ultrastructural features place the patient into a small heterogeneous group within the NCL. A better classification of such unique instances of the disease must await elucidation of the basic enzymatic defects.
Resumo:
This in vitro study evaluated the cytotoxicity of an experimental restorative composite resin subjected to different light-curing regimens. METHODS: Forty round-shaped specimens were prepared and randomly assigned to four experimental groups (n=10), as follows: in Group 1, no light-curing; in Groups 2, 3 and 4, the composite resin specimens were light-cured for 20, 40 or 60 s, respectively. In Group 5, filter paper discs soaked in 5 µL PBS were used as negative controls. The resin specimens and paper discs were placed in wells of 24-well plates in which the odontoblast-like cells MDPC-23 (30,000 cells/cm²) were plated and incubated in a humidified incubator with 5% CO2 and 95% air at 37ºC for 72 h. The cytotoxicity was evaluated by the cell metabolism (MTT assay) and cell morphology (SEM). The data were analyzed statistically by Kruskal-Wallis and Mann-Whitney tests (p<0.05). RESULTS: In G1, cell metabolism decreased by 86.2%, indicating a severe cytotoxicity of the non-light-cured composite resin. On the other hand, cell metabolism decreased by only 13.3% and 13.5% in G2 and G3, respectively. No cytotoxic effects were observed in G4 and G5. In G1, only a few round-shaped cells with short processes on their cytoplasmic membrane were observed. In the other experimental groups as well as in control group, a number of spindle-shaped cells with long cytoplasmic processes were found. CONCLUSION: Regardless of the photoactivation time used in the present investigation, the experimental composite resin presented mild to no toxic effects to the odontoblast-like MDPC-23 cells. However, intense cytotoxic effects occurred when no light-curing was performed.
Resumo:
OBJETIVO: avaliar os efeitos da administração da associação zidovudina-lamivudina-ritonavir nos fígados e rins de ratas prenhes e seus conceptos do ponto de vista morfológico e fisiológico. MÉTODOS: 40 ratas albinas prenhes foram aleatoriamente divididas em 4 grupos: 1 controle (Ctrl: controle de veículo) e 3 experimentais (Exp1x, Exp3x e Exp9x). Estes últimos foram tratados por solução oral de zidovudina/lamivudina/ritonavir (Exp1x: 10/5/20 mg/kg; Exp3x: 30/15/60 mg/kg; Exp9x: 90/45/180 mg/kg). As drogas e o veículo foram administrados por gavagem, desde o 1º até o 20º dia de prenhez. No último dia do experimento, todos os animais foram anestesiados e sangue foi retirado da cavidade cardíaca para avaliação sérica das enzimas aspartato aminotransferase (AST) e alanina aminotransferase (ALT), por método calorimétrico, bem como da ureia, determinada por método cinético-enzimático, e creatinina, por método cinético-colorimétrico. Em seguida, fragmentos dos fígados e rins maternos e fetais foram coletados, fixados em formol a 10% e processados segundo os métodos histológicos para inclusão em parafina. Cortes com 5 µm de espessura foram corados pela hematoxilina-eosina (HE) e analisados por microscopia de luz. Na leitura das lâminas, considerou-se o padrão de normalidade para fígado e rins, tais como: hepatócitos, espaço porta íntegros e veias hepáticas bem definidas. Nos rins, a presença de corpúsculos renais, túbulos contorcidos e alças de Henle típicos. Nos fígados fetais considerou-se, ainda, a morfologia das células da linhagem eritrocitária nas diferentes fases do desenvolvimento, bem como os megacariócitos. Quando houve alteração da coloração padrão estabelecida para as estruturas hepáticas e renais, alteração na morfologia de núcleos, rompimento de limites de alguma organela citoplasmática, presença de congestão vascular, tudo isso foi entendido como provavelmente provocado pelas drogas em sua(s) dose(s) de aplicação. A avaliação estatística foi realizada por análise de variância (ANOVA), completada pelo teste de Tukey-Kramer (p<0,05). RESULTADOS: os fígados maternos dos grupos Ctrl, Exp1x e Exp3x mostraram hepatócitos típicos, espaço porta íntegros e veias hepáticas com aspecto normal. No fígado materno do grupo Exp9x, foram encontrados hepatócitos com sinais de atrofia e apoptose (eosinofilia citoplasmática e núcleos picnóticos). Além disso, identificou-se vasodilatação dos capilares sinusoides (congestão). Os rins maternos dos grupos Ctrl e Exp1x apresentaram-se normais, com corpúsculos renais, túbulos contorcidos e alças de Henle típicos. Já nos grupos Exp3x e Exp9x, foram encontrados congestão vascular, glomérulos pequenos ricos em células contendo núcleos hipercromáticos, sendo mais intensos no Exp9x. Com relação aos fígados e rins fetais, não foram observadas alterações morfológicas ou fisiológicas nos grupos estudados. Encontrou-se aumento significante nos níveis da AST (305,70±55,80; p<0,05) e da creatinina (0,50±0,09; p<0,05) no grupo Exp9x. CONCLUSÕES: nossos resultados evidenciam que a administração da associação zidovudina/lamivudina/ritonavir a ratas prenhes em altas doses causa alterações morfológicas e funcionais nos fígados e rins maternos. Não houve alterações nem morfológicas nem fisiológicas nos fígados e rins fetais.
Resumo:
Wolbachia are endosymbiont bacteria of the family Rickettsiacea that are widespread in invertebrates and occur between 20% and 60% of Neotropical insects. These bacteria are responsible for reproductive phenomena such as cytoplasmic incompatibility, male killing, feminization and parthenogenesis. Supergroups A and B of Wolbachia are common in insects and can be identified using primers for 16S rDNA, ftsZ and wsp; these primers vary in their ability to detect Wolbachia. The ftsZ primer was the first primer used to detect Wolbachia in Anastrepha fruit flies. The primers for 16S rDNA, ftsZ and wsp and the corresponding PCR conditions have been optimized to study the distribution of Wolbachia and their effect on the biology of Anastrepha in Brazil. In this work, we examined the ability of these primers to detect Wolbachia in Anastrepha populations from three regions in the State of São Paulo, southeastern Brazil. All of the samples were positive for Wolbachia supergroup A when screened with primers for 16S A rDNA and wsp A; the wsp B primer also gave a positive result, indicating cross-reactivity. The ftsZ primer showed a poor ability to detect Wolbachia in Anastrepha and generated false negatives in 44.9% of the samples. These findings indicate that reliable PCR detection of Wolbachia requires the use of primers for 16S rDNA and wsp to avoid cross-reactions and false negatives, and that the ftsZ primer needs to be redesigned to improve its selectivity.
Resumo:
A common side effect of radiotherapy used in the treatment of oral cancer is the occurrence of structural and physiological alterations of the salivary glands due to exposure to ionizing radiation, as demonstrated by conditions such as decreased salivary flow. The present study evaluated ultrastructural alterations in the parotid glands of rats receiving a fractionated dose (1,500-cGy) of radiation emitted by a Cesium-137 source and rats that were not subjected to ionizing radiation. After sacrifice, the parotid glands were removed and examined by transmission electron microscopy. Damage such as cytoplasmic vacuolization, dilatation of the endoplasmic reticulum and destruction of mitochondria, as well as damage to the cellular membrane of acinar cells, were observed. These findings lead to the conclusion that ionizing radiation promotes alterations in the glandular parenchyma, and that these alterations are directly related to the dose level of absorbed radiation. Certain phenomena that appear in the cytoplasm and nuclear material indicate that ionizing radiation causes acinar cell death (apoptosis).
Resumo:
OBJECTIVE: To investigate the expression of SMAD proteins in human thyroid tissues since the inactivation of TGF-β/activin signaling components is reported in several types of cancer. Phosphorylated SMAD 2 and SMAD3 (pSMAD2/3) associated with the SMAD4 induce the signal transduction generated by TGF-β and activin, while SMAD7 inhibits this intracellular signaling. Although TGF-β and activin exert antiproliferative roles in thyroid follicular cells, thyroid tumors express high levels of these proteins. MATERIALS AND METHODS: The protein expression of SMADs was evaluated in multinodular goiter, follicular adenoma, papillary and follicular carcinomas by immunohistochemistry. RESULTS: The expression of pSMAD2/3, SMAD4 and SMAD7 was observed in both benign and malignant thyroid tumors. Although pSMAD2/3, SMAD4 and SMAD7 exhibited high cytoplasmic staining in carcinomas, the nuclear staining of pSMAD2/3 was not different between benign and malignant lesions. CONCLUSIONS: The finding of SMADs expression in thyroid cells and the presence of pSMAD2/3 and SMAD4 proteins in the nucleus of tumor cells indicates propagation of TGF-β/activin signaling. However, the high expression of the inhibitory SMAD7, mostly in malignant tumors, could contribute to the attenuation of the SMADs antiproliferative signaling in thyroid carcinomas.
Resumo:
The development of new drugs is one strategy for malaria control. Biochemical pathways localised in the apicoplast of the parasite, such as the synthesis of isoprenic precursors, are excellent targets because they are different or absent in the human host. Isoprenoids are a large and highly diverse group of natural products with many functions and their synthesis is essential for the parasite's survival. During the last few years, the genes, enzymes, intermediates and mechanisms of this biosynthetic route have been elucidated. In this review, we comment on some aspects of the methylerythritol phosphate pathway and discuss the presence of diverse isoprenic products such as dolichol, ubiquinone, carotenoids, menaquinone and isoprenylated proteins, which are biosynthesised during the intraerythrocytic stages of Plasmodium falciparum.
Resumo:
Neglected diseases are a major global cause of illness, long-term disability and death. Chagas' disease is a parasitic infection widely distributed throughout Latin America, with devastating consequences in terms of human morbidity and mortality. The existing drug therapy suffers from a combination of drawbacks including poor efficacy, resistance and serious side effects. In 2009, we celebrate the 100th anniversary of the discovery of Chagas' disease, facing the challenges of developing new, safe and effective drugs for the treatment of this disease. This brief review attempts to highlight the state of the art, limitations and perspectives of Chagas' disease drug development.
Resumo:
Since the discovery of Trypanosoma cruzi and the brilliant description of the then-referred to "new tripanosomiasis" by Carlos Chagas 100 years ago, a great deal of scientific effort and curiosity has been devoted to understanding how this parasite invades and colonises mammalian host cells. This is a key step in the survival of the parasite within the vertebrate host, and although much has been learned over this century, differences in strains or isolates used by different laboratories may have led to conclusions that are not as universal as originally interpreted. Molecular genotyping of the CL-Brener clone confirmed a genetic heterogeneity in the parasite that had been detected previously by other techniques, including zymodeme or schizodeme (kDNA) analysis. T. cruzi can be grouped into at least two major phylogenetic lineages: T. cruzi I, mostly associated with the sylvatic cycle and T. cruzi II, linked to human disease; however, a third lineage, T. cruziIII, has also been proposed. Hybrid isolates, such as the CL-Brener clone, which was chosen for sequencing the genome of the parasite (Elias et al. 2005, El Sayed et al. 2005a), have also been identified. The parasite must be able to invade cells in the mammalian host, and many studies have implicated the flagellated trypomastigotes as the main actor in this process. Several surface components of parasites and some of the host cell receptors with which they interact have been described. Herein, we have attempted to identify milestones in the history of understanding T. cruzi- host cell interactions. Different infective forms of T. cruzi have displayed unexpected requirements for the parasite to attach to the host cell, enter it, and translocate between the parasitophorous vacuole to its final cytoplasmic destination. It is noteworthy that some of the mechanisms originally proposed to be broad in function turned out not to be universal, and multiple interactions involving different repertoires of molecules seem to act in concert to give rise to a rather complex interplay of signalling cascades involving both parasite and cellular components.
Resumo:
Dipeptide syntheses starting from Ac-L-Tyr-OEt or Z-L-X-OMe (X: Asp, Tyr, Phe, Arg, Lys or Thr) and glycine amide in biphasic reaction media were achieved using two commercially available porcine pancreatic lipase (PPL) preparations (crude (cPPL) and purified PPL (pPPL)). Under the mild conditions employed, α-chymotrypsin, a pancreatic protease that also presents esterase activity, catalyzed Ac-L-Tyr-Gly-NH2 synthesis with high productivity. Product hydrolysis also occurred in most of the syntheses studied. Polyacrylamide gel electrophoresis, enzymatic assays employing specific chromogenic substrates and size-exclusion chromatography revealed that cPPL and pPPL contain contaminant proteases and, therefore, exhibit esterase and amidase activities. Overall, these data indicate that those contaminants may be the main catalysts of peptide bond synthesis when Nα-blocked-L-amino acid esters and the commercial PPL preparations are used. On the other hand, such data do not contest the possibility of using such enzyme preparations as an inexpensive source of catalysts for dipeptide synthesis under soft conditions.
Resumo:
The manner by which effects of simultaneous mutations combine to change enzymatic activity is not easily predictable because these effects are not always additive in a linear manner. Hence, the characterization of the effects of simultaneous mutations of amino acid residues that bind the substrate can make a significant contribution to the understanding of the substrate specificity of enzymes. In the β-glycosidase from Spodoptera frugiperda (Sfβgly), both residues Q39 and E451 interact with the substrate and this is essential for defining substrate specificity. Double mutants of Sfβgly (A451E39, S451E39 and S451N39) were prepared by site-directed mutagenesis, expressed in bacteria and purified using affinity chromatography. These enzymes were characterized using p-nitrophenyl β-galactoside and p-nitrophenyl β-fucoside as substrates. The k cat/Km ratio for single and double mutants of Sfβgly containing site-directed mutations at positions Q39 and E451 was used to demonstrate that the effect on the free energy of ES‡ (enzyme-transition state complex) of the double mutations (∆∆G‡xy) is not the sum of the effects resulting from the single mutations (∆∆G‡x and ∆∆G‡y). This difference in ∆∆G‡ indicates that the effects of the single mutations partially overlap. Hence, this common effect counts only once in ∆∆G‡xy. Crystallographic data on β-glycosidases reveal the presence of a bidentate hydrogen bond involving residues Q39 and E451 and the same hydroxyl group of the substrate. Therefore, both thermodynamic and crystallographic data suggest that residues Q39 and E451 exert a mutual influence on their respective interactions with the substrate.
Resumo:
Docosahexaenoic acid (C22:6, n-3, DHA) is a polyunsaturated fatty acid (PUFA) present in large concentrations in the brain and, due to the presence of six double bonds in its structure, is highly susceptible to oxidation by enzymes and reactive oxygen/nitrogen species. The peroxidation of PUFAs has been implicated in an increasing number of human disorders, including neurodegenerative diseases. Hence, a better understanding of the metabolism pathways of DHA should provide new insights about its role in neurodegenerative diseases. Here we review the main aspects related to DHA metabolism, as well as, the recent findings showing its association with neurodegenerative diseases.
Resumo:
Enzymes are extremely efficient catalysts. Here, part of the mechanisms proposed to explain this catalytic power will be compared to quantitative experimental results and computer simulations. Influence of the enzymatic environment over species along the reaction coordinate will be analysed. Concepts of transition state stabilisation and reactant destabilisation will be confronted. Divided site model and near-attack conformation hypotheses will also be discussed. Molecular interactions such as covalent catalysis, general acid-base catalysis, electrostatics, entropic effects, steric hindrance, quantum and dynamical effects will also be analysed as sources of catalysis. Reaction mechanisms, in particular that catalysed by protein tyrosine phosphatases, illustrate the concepts.