892 resultados para Constructive heuristics
Resumo:
An important production programming problem arises in paper industries coupling multiple machine scheduling with cutting stocks. Concerning machine scheduling: how can the production of the quantity of large rolls of paper of different types be determined. These rolls are cut to meet demand of items. Scheduling that minimizes setups and production costs may produce rolls which may increase waste in the cutting process. On the other hand, the best number of rolls in the point of view of minimizing waste may lead to high setup costs. In this paper, coupled modeling and heuristic methods are proposed. Computational experiments are presented.
Resumo:
We consider the formal non-relativistic limit (nrl) of the : phi(4):(s+1) relativistic quantum field theory (rqft), where s is the space dimension. Following the work of R. Jackiw [R. Jackiw, in: A. Ali, P. Hood-bhoy (Eds.), Beg Memorial Volume, World Scientific, Singapore, 1991], we show that, for s = 2 and a given value of the ultraviolet cutoff K, there are two ways to perform the nrl: (i) fixing the renormalized mass m(2) equal to the bare mass m(0)(2); (ii) keeping the renormalized mass fixed and different from the bare mass mo. In the (infinite-volume) two-particle sector the scattering amplitude tends to zero as K -> infinity in case (i) and, in case (ii), there is a bound state, indicating that the interaction potential is attractive. As a consequence, stability of matter fails for our boson system. We discuss why both alternatives do not reproduce the low-energy behaviour of the full rqft. The singular nature of the nrl is also nicely illustrated for s = 1 by a rigorous stability/instability result of a different nature. (C) 2007 Elsevier Inc. All rights reserved.
Resumo:
We present a constructive argument to demonstrate the universality of the sudden death of entanglement in the case of two non-interacting qubits, each of which generically coupled to independent Markovian environments at zero temperature. Conditions for the occurrence of the abrupt disappearance of entanglement are determined and, most importantly, rigourously shown to be almost always satisfied: Dynamical models for which the sudden death of entanglement does not occur are seen to form a highly idealized zero-measure subset within the set of all possible quantum dynamics.
Resumo:
This paper presents the formulation of a combinatorial optimization problem with the following characteristics: (i) the search space is the power set of a finite set structured as a Boolean lattice; (ii) the cost function forms a U-shaped curve when applied to any lattice chain. This formulation applies for feature selection in the context of pattern recognition. The known approaches for this problem are branch-and-bound algorithms and heuristics that explore partially the search space. Branch-and-bound algorithms are equivalent to the full search, while heuristics are not. This paper presents a branch-and-bound algorithm that differs from the others known by exploring the lattice structure and the U-shaped chain curves of the search space. The main contribution of this paper is the architecture of this algorithm that is based on the representation and exploration of the search space by new lattice properties proven here. Several experiments, with well known public data, indicate the superiority of the proposed method to the sequential floating forward selection (SFFS), which is a popular heuristic that gives good results in very short computational time. In all experiments, the proposed method got better or equal results in similar or even smaller computational time. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
The logic of proofs (lp) was proposed as Gdels missed link between Intuitionistic and S4-proofs, but so far the tableau-based methods proposed for lp have not explored this closeness with S4 and contain rules whose analycity is not immediately evident. We study possible formulations of analytic tableau proof methods for lp that preserve the subformula property. Two sound and complete tableau decision methods of increasing degree of analycity are proposed, KELP and preKELP. The latter is particularly inspired on S4-proofs. The crucial role of proof constants in the structure of lp-proofs methods is analysed. In particular, a method for the abduction of proof constant specifications in strongly analytic preKELP proofs is presented; abduction heuristics and the complexity of the method are discussed.
Resumo:
We consider the problems of finding the maximum number of vertex-disjoint triangles (VTP) and edge-disjoint triangles (ETP) in a simple graph. Both problems are NP-hard. The algorithm with the best approximation ratio known so far for these problems has ratio 3/2 + epsilon, a result that follows from a more general algorithm for set packing obtained by Hurkens and Schrijver [On the size of systems of sets every t of which have an SDR, with an application to the worst-case ratio of heuristics for packing problems, SIAM J. Discrete Math. 2(1) (1989) 68-72]. We present improvements on the approximation ratio for restricted cases of VTP and ETP that are known to be APX-hard: we give an approximation algorithm for VTP on graphs with maximum degree 4 with ratio slightly less than 1.2, and for ETP on graphs with maximum degree 5 with ratio 4/3. We also present an exact linear-time algorithm for VTP on the class of indifference graphs. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
The problem of scheduling a parallel program presented by a weighted directed acyclic graph (DAG) to the set of homogeneous processors for minimizing the completion time of the program has been extensively studied as academic optimization problem which occurs in optimizing the execution time of parallel algorithm with parallel computer.In this paper, we propose an application of the Ant Colony Optimization (ACO) to a multiprocessor scheduling problem (MPSP). In the MPSP, no preemption is allowed and each operation demands a setup time on the machines. The problem seeks to compose a schedule that minimizes the total completion time.We therefore rely on heuristics to find solutions since solution methods are not feasible for most problems as such. This novel heuristic searching approach to the multiprocessor based on the ACO algorithm a collection of agents cooperate to effectively explore the search space.A computational experiment is conducted on a suit of benchmark application. By comparing our algorithm result obtained to that of previous heuristic algorithm, it is evince that the ACO algorithm exhibits competitive performance with small error ratio.
Resumo:
A main aim with the essay “Constructive and destructive forms of language communication in modern work organizations” is to try to develop methods which can be used to measure and classify different forms of language communication. Methods that hopefully also can be used for analysis of in which ways dominating language communication forms affects employees health in modern work organizations.Quantitative methods have chiefly been used in the essay. A questionnaire study based on sociological research and psychoterapeutic research and practice has been used to collect data around communication in two work organizations (community health centers). Then communication has been classified in two main forms: constructive and destructive language communication.Results in the essay indicate that there are tendencies to links between high illness-absence and destructive communication in a work organization. In the work organization with the highest illness-absence, during a chosen period of inquiry (2005), a larger share of the employees stated that the communications in their organization were destructive, compared to the employees in the organization which showed the lowest illness-absence. Statistically secured links between high illness-absence and destructive communication have however not been observed.
Resumo:
This Thesis Work will concentrate on a very interesting problem, the Vehicle Routing Problem (VRP). In this problem, customers or cities have to be visited and packages have to be transported to each of them, starting from a basis point on the map. The goal is to solve the transportation problem, to be able to deliver the packages-on time for the customers,-enough package for each Customer,-using the available resources- and – of course - to be so effective as it is possible.Although this problem seems to be very easy to solve with a small number of cities or customers, it is not. In this problem the algorithm have to face with several constraints, for example opening hours, package delivery times, truck capacities, etc. This makes this problem a so called Multi Constraint Optimization Problem (MCOP). What’s more, this problem is intractable with current amount of computational power which is available for most of us. As the number of customers grow, the calculations to be done grows exponential fast, because all constraints have to be solved for each customers and it should not be forgotten that the goal is to find a solution, what is best enough, before the time for the calculation is up. This problem is introduced in the first chapter: form its basics, the Traveling Salesman Problem, using some theoretical and mathematical background it is shown, why is it so hard to optimize this problem, and although it is so hard, and there is no best algorithm known for huge number of customers, why is it a worth to deal with it. Just think about a huge transportation company with ten thousands of trucks, millions of customers: how much money could be saved if we would know the optimal path for all our packages.Although there is no best algorithm is known for this kind of optimization problems, we are trying to give an acceptable solution for it in the second and third chapter, where two algorithms are described: the Genetic Algorithm and the Simulated Annealing. Both of them are based on obtaining the processes of nature and material science. These algorithms will hardly ever be able to find the best solution for the problem, but they are able to give a very good solution in special cases within acceptable calculation time.In these chapters (2nd and 3rd) the Genetic Algorithm and Simulated Annealing is described in details, from their basis in the “real world” through their terminology and finally the basic implementation of them. The work will put a stress on the limits of these algorithms, their advantages and disadvantages, and also the comparison of them to each other.Finally, after all of these theories are shown, a simulation will be executed on an artificial environment of the VRP, with both Simulated Annealing and Genetic Algorithm. They will both solve the same problem in the same environment and are going to be compared to each other. The environment and the implementation are also described here, so as the test results obtained.Finally the possible improvements of these algorithms are discussed, and the work will try to answer the “big” question, “Which algorithm is better?”, if this question even exists.
Resumo:
Nowadays in the world of mass consumption there is big demand for distributioncenters of bigger size. Managing such a center is a very complex and difficult taskregarding to the different processes and factors in a usual warehouse when we want tominimize the labor costs. Most of the workers’ working time is spent with travelingbetween source and destination points which cause deadheading. Even if a worker knowsthe structure of a warehouse well and because of that he or she can find the shortest pathbetween two points, it is still not guaranteed that there won’t be long traveling timebetween the locations of two consecutive tasks. We need optimal assignments betweentasks and workers.In the scientific literature Generalized Assignment Problem (GAP) is a wellknownproblem which deals with the assignment of m workers to n tasks consideringseveral constraints. The primary purpose of my thesis project was to choose a heuristics(genetic algorithm, tabu search or ant colony optimization) to be implemented into SAPExtended Warehouse Management (SAP EWM) by with task assignment will be moreeffective between tasks and resources.After system analysis I had to realize that due different constraints and businessdemands only 1:1 assingments are allowed in SAP EWM. Because of that I had to use adifferent and simpler approach – instead of the introduced heuristics – which could gainbetter assignments during the test phase in several cases. In the thesis I described indetails what ware the most important questions and problems which emerged during theplanning of my optimized assignment method.
Resumo:
The field of automated timetabling and scheduling meeting all the requirementsthat we call constraints is always difficult task and already proved as NPComplete. The idea behind my research is to implement Genetic Algorithm ongeneral scheduling problem under predefined constraints and check the validityof results, and then I will explain the possible usage of other approaches likeexpert systems, direct heuristics, network flows, simulated annealing and someother approaches. It is observed that Genetic Algorithm is good solutiontechnique for solving such problems. The program written in C++ and analysisis done with using various tools explained in details later.
Resumo:
In order to achieve the high performance, we need to have an efficient scheduling of a parallelprogram onto the processors in multiprocessor systems that minimizes the entire executiontime. This problem of multiprocessor scheduling can be stated as finding a schedule for ageneral task graph to be executed on a multiprocessor system so that the schedule length can be minimize [10]. This scheduling problem is known to be NP- Hard.In multi processor task scheduling, we have a number of CPU’s on which a number of tasksare to be scheduled that the program’s execution time is minimized. According to [10], thetasks scheduling problem is a key factor for a parallel multiprocessor system to gain betterperformance. A task can be partitioned into a group of subtasks and represented as a DAG(Directed Acyclic Graph), so the problem can be stated as finding a schedule for a DAG to beexecuted in a parallel multiprocessor system so that the schedule can be minimized. Thishelps to reduce processing time and increase processor utilization. The aim of this thesis workis to check and compare the results obtained by Bee Colony algorithm with already generatedbest known results in multi processor task scheduling domain.
Resumo:
Train dispatchers faces lots of challenges due to conflicts which causes delays of trains as a result of solving possible dispatching problems the network faces. The major challenge is for the train dispatchers to make the right decision and have reliable, cost effective and much more faster approaches needed to solve dispatching problems. This thesis work provides detail information on the implementation of different heuristic algorithms for train dispatchers in solving train dispatching problems. The library data files used are in xml file format and deals with both single and double tracks between main stations. The main objective of this work is to build different heuristic algorithms to solve unexpected delays faced by train dispatchers and to help in making right decisions on steps to take to have reliable and cost effective solution to the problems. These heuristics algorithms proposed were able to help dispatchers in making right decisions when solving train dispatching problems.
Resumo:
This essay set out to propose a problematic interpretation of the socio-cultural perspective on learning. Its purpose is to show how the socio-cultural perspective on learning defines the concept of knowledge in an incomplete way. The aim becomes then that of giving a more comprehensive description of this concept, and, to this end, to construct a new, broader pedagogic discourse. The investigation starts with a deconstructive analysis of Roger Säljö’s socio-cultural text in order to point out the incompleteness of the concept of knowledge. The constructive part of the analysis proceeds using Heidegger’s and Sartre’s philosophical theories which take a general approach on human learning and on human knowledge as dependent on intuition. A dichotomy of two new concepts related to knowledge is thus defined: how-knowledge and why-knowledge. This reconceptualisation of the concept of knowledge allows a reinterpretation of any act of knowledge in a structural way. Hence any act of knowledge includes a moment (a) which defines the initial contextual (conceptual or practical) situation; a moment (b) which represents an algorithm, a procedure, or a theory; and a moment (c) which represents the result of the act, and is the direct application of knowledge as a finalized entity. Knowledge inbuilt in (a) and (c) is characterized as how-knowledge, while that in (b) is characterized as why-knowledge. In a learning situation a focus on how-knowledge implies finality and objectification of students. Conversely, why-knowledge implies students becoming subjects of their own learning.
Resumo:
Quadratic assignment problems (QAPs) are commonly solved by heuristic methods, where the optimum is sought iteratively. Heuristics are known to provide good solutions but the quality of the solutions, i.e., the confidence interval of the solution is unknown. This paper uses statistical optimum estimation techniques (SOETs) to assess the quality of Genetic algorithm solutions for QAPs. We examine the functioning of different SOETs regarding biasness, coverage rate and length of interval, and then we compare the SOET lower bound with deterministic ones. The commonly used deterministic bounds are confined to only a few algorithms. We show that, the Jackknife estimators have better performance than Weibull estimators, and when the number of heuristic solutions is as large as 100, higher order JK-estimators perform better than lower order ones. Compared with the deterministic bounds, the SOET lower bound performs significantly better than most deterministic lower bounds and is comparable with the best deterministic ones.