866 resultados para Computer Vision and Pattern Recognition
Resumo:
Any automatically measurable, robust and distinctive physical characteristic or personal trait that can be used to identify an individual or verify the claimed identity of an individual, referred to as biometrics, has gained significant interest in the wake of heightened concerns about security and rapid advancements in networking, communication and mobility. Multimodal biometrics is expected to be ultra-secure and reliable, due to the presence of multiple and independent—verification clues. In this study, a multimodal biometric system utilising audio and facial signatures has been implemented and error analysis has been carried out. A total of one thousand face images and 250 sound tracks of 50 users are used for training the proposed system. To account for the attempts of the unregistered signatures data of 25 new users are tested. The short term spectral features were extracted from the sound data and Vector Quantization was done using K-means algorithm. Face images are identified based on Eigen face approach using Principal Component Analysis. The success rate of multimodal system using speech and face is higher when compared to individual unimodal recognition systems
Resumo:
Speech is the most natural means of communication among human beings and speech processing and recognition are intensive areas of research for the last five decades. Since speech recognition is a pattern recognition problem, classification is an important part of any speech recognition system. In this work, a speech recognition system is developed for recognizing speaker independent spoken digits in Malayalam. Voice signals are sampled directly from the microphone. The proposed method is implemented for 1000 speakers uttering 10 digits each. Since the speech signals are affected by background noise, the signals are tuned by removing the noise from it using wavelet denoising method based on Soft Thresholding. Here, the features from the signals are extracted using Discrete Wavelet Transforms (DWT) because they are well suitable for processing non-stationary signals like speech. This is due to their multi- resolutional, multi-scale analysis characteristics. Speech recognition is a multiclass classification problem. So, the feature vector set obtained are classified using three classifiers namely, Artificial Neural Networks (ANN), Support Vector Machines (SVM) and Naive Bayes classifiers which are capable of handling multiclasses. During classification stage, the input feature vector data is trained using information relating to known patterns and then they are tested using the test data set. The performances of all these classifiers are evaluated based on recognition accuracy. All the three methods produced good recognition accuracy. DWT and ANN produced a recognition accuracy of 89%, SVM and DWT combination produced an accuracy of 86.6% and Naive Bayes and DWT combination produced an accuracy of 83.5%. ANN is found to be better among the three methods.
Resumo:
On-line handwriting recognition has been a frontier area of research for the last few decades under the purview of pattern recognition. Word processing turns to be a vexing experience even if it is with the assistance of an alphanumeric keyboard in Indian languages. A natural solution for this problem is offered through online character recognition. There is abundant literature on the handwriting recognition of western, Chinese and Japanese scripts, but there are very few related to the recognition of Indic script such as Malayalam. This paper presents an efficient Online Handwritten character Recognition System for Malayalam Characters (OHR-M) using K-NN algorithm. It would help in recognizing Malayalam text entered using pen-like devices. A novel feature extraction method, a combination of time domain features and dynamic representation of writing direction along with its curvature is used for recognizing Malayalam characters. This writer independent system gives an excellent accuracy of 98.125% with recognition time of 15-30 milliseconds
Resumo:
This paper presents a novel approach to recognize Grantha, an ancient script in South India and converting it to Malayalam, a prevalent language in South India using online character recognition mechanism. The motivation behind this work owes its credit to (i) developing a mechanism to recognize Grantha script in this modern world and (ii) affirming the strong connection among Grantha and Malayalam. A framework for the recognition of Grantha script using online character recognition is designed and implemented. The features extracted from the Grantha script comprises mainly of time-domain features based on writing direction and curvature. The recognized characters are mapped to corresponding Malayalam characters. The framework was tested on a bed of medium length manuscripts containing 9-12 sample lines and printed pages of a book titled Soundarya Lahari writtenin Grantha by Sri Adi Shankara to recognize the words and sentences. The manuscript recognition rates with the system are for Grantha as 92.11%, Old Malayalam 90.82% and for new Malayalam script 89.56%. The recognition rates of pages of the printed book are for Grantha as 96.16%, Old Malayalam script 95.22% and new Malayalam script as 92.32% respectively. These results show the efficiency of the developed system
Resumo:
This paper presents methods for moving object detection in airborne video surveillance. The motion segmentation in the above scenario is usually difficult because of small size of the object, motion of camera, and inconsistency in detected object shape etc. Here we present a motion segmentation system for moving camera video, based on background subtraction. An adaptive background building is used to take advantage of creation of background based on most recent frame. Our proposed system suggests CPU efficient alternative for conventional batch processing based background subtraction systems. We further refine the segmented motion by meanshift based mode association.
Resumo:
Handwritten character recognition is always a frontier area of research in the field of pattern recognition and image processing and there is a large demand for OCR on hand written documents. Even though, sufficient studies have performed in foreign scripts like Chinese, Japanese and Arabic characters, only a very few work can be traced for handwritten character recognition of Indian scripts especially for the South Indian scripts. This paper provides an overview of offline handwritten character recognition in South Indian Scripts, namely Malayalam, Tamil, Kannada and Telungu
Resumo:
This thesis describes the development of a model-based vision system that exploits hierarchies of both object structure and object scale. The focus of the research is to use these hierarchies to achieve robust recognition based on effective organization and indexing schemes for model libraries. The goal of the system is to recognize parameterized instances of non-rigid model objects contained in a large knowledge base despite the presence of noise and occlusion. Robustness is achieved by developing a system that can recognize viewed objects that are scaled or mirror-image instances of the known models or that contain components sub-parts with different relative scaling, rotation, or translation than in models. The approach taken in this thesis is to develop an object shape representation that incorporates a component sub-part hierarchy- to allow for efficient and correct indexing into an automatically generated model library as well as for relative parameterization among sub-parts, and a scale hierarchy- to allow for a general to specific recognition procedure. After analysis of the issues and inherent tradeoffs in the recognition process, a system is implemented using a representation based on significant contour curvature changes and a recognition engine based on geometric constraints of feature properties. Examples of the system's performance are given, followed by an analysis of the results. In conclusion, the system's benefits and limitations are presented.
Resumo:
This paper describes a simple method for internal camera calibration for computer vision. This method is based on tracking image features through a sequence of images while the camera undergoes pure rotation. The location of the features relative to the camera or to each other need not be known and therefore this method can be used both for laboratory calibration and for self calibration in autonomous robots working in unstructured environments. A second method of calibration is also presented. This method uses simple geometric objects such as spheres and straight lines to The camera parameters. Calibration is performed using both methods and the results compared.
Resumo:
We describe a method for modeling object classes (such as faces) using 2D example images and an algorithm for matching a model to a novel image. The object class models are "learned'' from example images that we call prototypes. In addition to the images, the pixelwise correspondences between a reference prototype and each of the other prototypes must also be provided. Thus a model consists of a linear combination of prototypical shapes and textures. A stochastic gradient descent algorithm is used to match a model to a novel image by minimizing the error between the model and the novel image. Example models are shown as well as example matches to novel images. The robustness of the matching algorithm is also evaluated. The technique can be used for a number of applications including the computation of correspondence between novel images of a certain known class, object recognition, image synthesis and image compression.
Resumo:
Image analysis and graphics synthesis can be achieved with learning techniques using directly image examples without physically-based, 3D models. In our technique: -- the mapping from novel images to a vector of "pose" and "expression" parameters can be learned from a small set of example images using a function approximation technique that we call an analysis network; -- the inverse mapping from input "pose" and "expression" parameters to output images can be synthesized from a small set of example images and used to produce new images using a similar synthesis network. The techniques described here have several applications in computer graphics, special effects, interactive multimedia and very low bandwidth teleconferencing.
Resumo:
In this paper we present a component based person detection system that is capable of detecting frontal, rear and near side views of people, and partially occluded persons in cluttered scenes. The framework that is described here for people is easily applied to other objects as well. The motivation for developing a component based approach is two fold: first, to enhance the performance of person detection systems on frontal and rear views of people and second, to develop a framework that directly addresses the problem of detecting people who are partially occluded or whose body parts blend in with the background. The data classification is handled by several support vector machine classifiers arranged in two layers. This architecture is known as Adaptive Combination of Classifiers (ACC). The system performs very well and is capable of detecting people even when all components of a person are not found. The performance of the system is significantly better than a full body person detector designed along similar lines. This suggests that the improved performance is due to the components based approach and the ACC data classification structure.
Resumo:
Dissenyar, implementar i testejar un sistema per classificar imatges: disseny d’un sistema que primer aprèn com són les imatges d’una classe a partir d’un conjunt d’imatges d’entrenament i després és capaç de classificar noves imatges assignant-les-hi l’ etiqueta corresponent a una de les classes “apreses”. Concretament s’analitzen caràtules de cd-roms, les quals s’han de reconèixer per després reproduir automàticament la música del seu àlbum associat
Resumo:
We investigate whether dimensionality reduction using a latent generative model is beneficial for the task of weakly supervised scene classification. In detail, we are given a set of labeled images of scenes (for example, coast, forest, city, river, etc.), and our objective is to classify a new image into one of these categories. Our approach consists of first discovering latent ";topics"; using probabilistic Latent Semantic Analysis (pLSA), a generative model from the statistical text literature here applied to a bag of visual words representation for each image, and subsequently, training a multiway classifier on the topic distribution vector for each image. We compare this approach to that of representing each image by a bag of visual words vector directly and training a multiway classifier on these vectors. To this end, we introduce a novel vocabulary using dense color SIFT descriptors and then investigate the classification performance under changes in the size of the visual vocabulary, the number of latent topics learned, and the type of discriminative classifier used (k-nearest neighbor or SVM). We achieve superior classification performance to recent publications that have used a bag of visual word representation, in all cases, using the authors' own data sets and testing protocols. We also investigate the gain in adding spatial information. We show applications to image retrieval with relevance feedback and to scene classification in videos
Resumo:
When underwater vehicles navigate close to the ocean floor, computer vision techniques can be applied to obtain motion estimates. A complete system to create visual mosaics of the seabed is described in this paper. Unfortunately, the accuracy of the constructed mosaic is difficult to evaluate. The use of a laboratory setup to obtain an accurate error measurement is proposed. The system consists on a robot arm carrying a downward looking camera. A pattern formed by a white background and a matrix of black dots uniformly distributed along the surveyed scene is used to find the exact image registration parameters. When the robot executes a trajectory (simulating the motion of a submersible), an image sequence is acquired by the camera. The estimated motion computed from the encoders of the robot is refined by detecting, to subpixel accuracy, the black dots of the image sequence, and computing the 2D projective transform which relates two consecutive images. The pattern is then substituted by a poster of the sea floor and the trajectory is executed again, acquiring the image sequence used to test the accuracy of the mosaicking system
A new approach to segmentation based on fusing circumscribed contours, region growing and clustering
Resumo:
One of the major problems in machine vision is the segmentation of images of natural scenes. This paper presents a new proposal for the image segmentation problem which has been based on the integration of edge and region information. The main contours of the scene are detected and used to guide the posterior region growing process. The algorithm places a number of seeds at both sides of a contour allowing stating a set of concurrent growing processes. A previous analysis of the seeds permits to adjust the homogeneity criterion to the regions's characteristics. A new homogeneity criterion based on clustering analysis and convex hull construction is proposed