989 resultados para Collagen deposition
Resumo:
Epitaxial cerium dioxide films on single-crystal silicon substrates (CeO2/Si) have been grown by a dual mass-analyzed low-energy ion beam deposition (IBD) system. By double-crystal X-ray diffraction (XRD), Full Width at Half Maximum (FWHM) are 23' and 33' in the rocking curves for (222) and (111) faces of the CeO2 film, respectively, and the lattice-mismatch Delta a/a with the substrate is about - 0.123%. The results show that the CeO2/Si grown by IBD is of high crystalline quality. In this work, the CeO2/Si heterostructure were investigated by X-ray Photoelectron Spectroscopy (XPS) and Auger Electron Spectroscopy (AES) measurements. Especially, XPS and AES depth profiling was used to analyze the compositions and structures in the interface regions of the as-grown and post-annealed CeO2/Si. It was found that there was no silicon oxide in the interface region of the as-grown sample but silicon oxide in the post-annealed sample. The reason for obtaining such high quality heterostructure mainly depends on the absence of silicon oxide in the surface at the beginning of the deposition. (C) 1998 Elsevier Science Ltd. All rights reserved.
Resumo:
Low-temperature growth of cubic GaN at 520 degrees C was achieved using CCl4 as an additive by metalorganic chemical-vapor deposition (MOCVD) on GaAs substrate. X-Ray measurement confirmed that the films are single-phase cubic GaN. Scanning electron microscopy (SEM) and reflection high-energy electron diffraction (RHEED) were also used to analyze the surface morphology and the quality of films. The evolution of surface morphology suggests that CCl4 can reduce the hopping barrier and thus Ga adatoms are able to diffuse easily on the GaN surface. (C) 1998 Elsevier Science S.A. All rights reserved.
Resumo:
The authors report on the fabrication of 980 nm InGaAs strained quantum well lasers with hybrid materials of InGaAsP as waveguide and AlGaAs as cladding grown by metal organic chemical vapour deposition. The InGaAs/InGaAsP/AlGaAs diode lasers (100 x 800 mu m) with broadened waveguide structure exhibit a threshold current of 180 mA, a slope efficiency of 1.0 W/A, and a high characteristic temperature coefficient (T-0) of 230 K.
Resumo:
Fe-N films containing the Fe16N2 phase were prepared in a high-vacuum system of ion-beam-assisted deposition (IBAD). The composition and structure of the films were analysed by Auger electron spectroscopy (AES) and X-ray diffraction (XRD), respectively. Magnetic properties of the films were measured by a vibrating sample magnetometer (VSM). The phase composition of Fe-N films depend sensitively on the N/Fe atomic arrival ratio and the deposition temperature. An Fe16N2 film was deposited successfully on a GaAs (1 0 0) substrate by IBAD at a N/Fe atomic arrival ratio of 0.12. The gram-saturation magnetic moment of the Fe16N2 film obtained is 237 emu/g at room temperature, the possible cause has been analysed and discussed. Hysteresis loops of Fe16N2 have been measured, the coercive force H-c is about 120 Oe, which is much larger than the value for Fe, this means the Fe16N2 sample exhibits a large uniaxial magnetocrystalline anisotropy. (C) 1998 Elsevier Science B.V. All rights reserved.
Resumo:
GexSi1-x epilayers were grown at 700-900 degrees C by atmospheric pressure chemical vapour deposition. GexSi1-x, Si and Ge growth rates as functions of GeH4 flow are considered separately to investigate how the growth of the epilayers is enhanced. Arrhenius plots of Si and Ge incorporation in the GexSi1-x growth show the activation energies associated with the growth rates are about 1.2 eV for silicon and 0.4 eV for germanium, indicating that Si growth is limited by surface kinetics and Ge growth is limited by mass transport. A model based on this idea is proposed and used to simulate the growth of GexSi1-x. The calculation and experiment are in good agreement. Growth rate and film composition increase monotonically with growth pressure; both observations are explained by the model.
Resumo:
Hybrid composites composed of zinc phthalocyanine embedded in silicon matrixes have attracted attention because of the potential for solar energy conversion. We produce hybrid composites by thermal evaporation for the plithalocyanine and PECVD (Plasma Enhanced Chemical Vapor Deposition) for the silicon matrix. Deposition of ZnPc/a-Si(amorphous silicon) composites was achieved in a sequential manner. The compound films were characterized by optical transmittance spectra and photoconductivity measurement. The optical transmittance measurements were carried out in the visible region (500 - 800 nm). Compared to pure silicon film, the photosensitivity of compound functional films was enhanced by one order of magnitude. This demonstrates the Si sensitized by adding ZnPc.
Resumo:
Horizontal air-cooled low-pressure hot-wall CVD (LP-HWCVD) system is developed to get high quality 4H-SiC epilayers. Homoepitaxial growth of 4H-SiC on off-oriented Si-face (0001) 4H-SiC substrates purchased from Cree is performed at a typical temperature of 1500 degrees C with a pressure of 40 Torr by using SiH4+C2H4+H-2 gas system. The surface morphologies and structural and optical properties of 4H-SiC epilayers are characterized with Nomarski optical microscope, atomic force microscopy (AFM), x-ray diffraction, Raman scattering, and low temperature photoluminescence (LTPL). The background doping of 32 pm-thick sample has been reduced to 2-5 x 10(15) cm(-3). The FWHM of the rocking curve is 9-16 arcsec. Intentional N-doped and B-doped 4H-SiC epilayers are obtained by in-situ doping of NH3 and B2H6, respectively. Schottky barrier diodes with reverse blocking voltage of over 1000 V are achieved preliminarily.
Resumo:
Quality ZnO films were successfully grown on Si(100) substrate by low-pressure metal organic chemical vapor deposition method in temperature range of 300-500 degrees C using DEZn and N2O as precursor and oxygen source respectively. The crystal structure, optical properties and surface morphology of ZnO films were characterized by X-ray diffraction, optical refection and atomic force microscopy technologies. It was demonstrated that the crystalline structure and surface morphology of ZnO films strongly depend on the growth temperature.
Resumo:
Post-growth annealing was carried out on ZnO thin films grown by metal-organic chemical vapor deposition (MOCVD). The grain size of ZnO thin film increases monotonically with annealing temperature. The ZnO thin films were preferential to c-axis oriented after annealing as confirmed by Xray diffraction (XRD) measurements. Fourier transformation infrared transmission measurements showed that ZnO films grown at low temperature contains CO2 molecules after post-growth annealing. A two-step reaction process has been proposed to explain the formation mechanism of CO2, which indicates the possible chemical reaction processes during the metal-organic chemical vapor deposition of ZnO films.
Resumo:
Numerical analysis was used to study the deposition and burning characteristics of combining co-combustion with slagging combustion technologies in this paper. The pyrolysis and burning kinetic models of different fuels were implanted into the WBSF-PCC2 (wall burning and slag flow in pulverized co-combustion) computation code, and then the slagging and co-combustion characteristicsespecially the wall burning mechanism of different solid fuels and their effects on the whole burning behavior in the cylindrical combustor at different mixing ratios under the condition of keeping the heat input samewere simulated numerically. The results showed that adding wood powder at 25% mass fraction can increase the temperature at the initial stage of combustion, which is helpful to utilize the front space of the combustor. Adding wood powder at a 25% mass fraction can increase the reaction rate at the initial combustion stage; also, the coal ignitability is improved, and the burnout efficiency is enhanced by about 5% of suspension and deposition particles, which is helpful for coal particles to burn entirely and for combustion devices to minimize their dimensions or sizes. The results also showed that adding wood powder at a proper ratio is helpful to keep the combustion stability, not only because of the enhancement for the burning characteristics, but also because the running slag layer structure can be changed more continuously, which is very important for avoiding the abnormal slag accumulation in the slagging combustor. The theoretic analysis in this paper proves that unification of co-combustion and slagging combustion technologies is feasible, though more comprehensive and rigorous research is needed.
Resumo:
ZnO, as a wide-band gap semiconductor, has recently become a new research focus in the field of ultraviolet optoelectronic semiconductors. Laser molecular beam epitaxy (L-MBE) is quite useful for the unit cell layer-by-layer epitaxial growth of zinc oxide thin films from the sintered ceramic target. The ZnO ceramic target with high purity was ablated by KrF laser pulses in an ultra high vacuum to deposit ZnO thin film during the process of L-MBE. It is found that the deposition rate of ZnO thin film by L-MBE is much lower than that by conventional pulsed laser deposition (PLD). Based on the experimental phenomena in the ZnO thin film growth process and the thermal-controlling mechanism of the nanosecond (ns) pulsed laser ablation of ZnO ceramic target, the suggested effective ablating time during the pulse duration can explain the very low deposition rate of the ZnO film by L-MBE. The unique dynamic mechanism for growing ZnO thin film is analyzed. Both the high energy of the deposition species and the low growth rate of the film are really beneficial for the L-MBE growth of the ZnO thin film with high crystallinity at low temperature.
Resumo:
Low pressure metalorganic chemical vapour deposition (LP-MOCVD) growth and characteristics of InAssb on (100) Gasb substrates are investigated. Mirror-like surfaces with a minimum lattice mismatch are obtained. The samples are studied by photoluminescence spectra, and the output is 3.17 mu m in wavelength. The surface of InAssb epilayer shows that its morphological feature is dependent on buffer layer. With an InAs buffer layer used, the best surface is obtained. The InAssb film shows to be of n-type conduction with an electron concentration of 8.52 x 10(16) cm(-3).