966 resultados para Cold atmospheric plasma


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Atmospheric aerosol particles have a strong impact on the global climate. A deep understanding of the physical and chemical processes affecting the atmospheric aerosol climate system is crucial in order to describe those processes properly in global climate models. Besides the climatic effects, aerosol particles can deteriorate e.g. visibility and human health. Nucleation is a fundamental step in atmospheric new particle formation. However, details of the atmospheric nucleation mechanisms have remained unresolved. The main reason for that has been the non-existence of instruments capable of measuring neutral newly formed particles in the size range below 3 nm in diameter. This thesis aims to extend the detectable particle size range towards close-to-molecular sizes (~1nm) of freshly nucleated clusters, and by direct measurement obtain the concentrations of sub-3 nm particles in atmospheric environment and in well defined laboratory conditions. In the work presented in this thesis, new methods and instruments for the sub-3 nm particle detection were developed and tested. The selected approach comprises four different condensation based techniques and one electrical detection scheme. All of them are capable to detect particles with diameters well below 3 nm, some even down to ~1 nm. The developed techniques and instruments were deployed in the field measurements as well as in laboratory nucleation experiments. Ambient air studies showed that in a boreal forest environment a persistent population of 1-2 nm particles or clusters exists. The observation was done using 4 different instruments showing a consistent capability for the direct measurement of the atmospheric nucleation. The results from the laboratory experiments showed that sulphuric acid is a key species in the atmospheric nucleation. The mismatch between the earlier laboratory data and ambient observations on the dependency of nucleation rate on sulphuric acid concentration was explained. The reason was shown to be associated in the inefficient growth of the nucleated clusters and in the insufficient detection efficiency of particle counters used in the previous experiments. Even though the exact molecular steps of nucleation still remain an open question, the instrumental techniques developed in this work as well as their application in laboratory and ambient studies opened a new view into atmospheric nucleation and prepared the way for investigating the nucleation processes with more suitable tools.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This research has been prompted by an interest in the atmospheric processes of hydrogen. The sources and sinks of hydrogen are important to know, particularly if hydrogen becomes more common as a replacement for fossil fuel in combustion. Hydrogen deposition velocities (vd) were estimated by applying chamber measurements, a radon tracer method and a two-dimensional model. These three approaches were compared with each other to discover the factors affecting the soil uptake rate. A static-closed chamber technique was introduced to determine the hydrogen deposition velocity values in an urban park in Helsinki, and at a rural site at Loppi. A three-day chamber campaign to carry out soil uptake estimation was held at a remote site at Pallas in 2007 and 2008. The atmospheric mixing ratio of molecular hydrogen has also been measured by a continuous method in Helsinki in 2007 - 2008 and at Pallas from 2006 onwards. The mean vd values measured in the chamber experiments in Helsinki and Loppi were between 0.0 and 0.7 mm s-1. The ranges of the results with the radon tracer method and the two-dimensional model were 0.13 - 0.93 mm s-1 and 0.12 - 0.61 mm s-1, respectively, in Helsinki. The vd values in the three-day campaign at Pallas were 0.06 - 0.52 mm s-1 (chamber) and 0.18 - 0.52 mm s-1 (radon tracer method and two-dimensional model). At Kumpula, the radon tracer method and the chamber measurements produced higher vd values than the two-dimensional model. The results of all three methods were close to each other between November and April, except for the chamber results from January to March, while the soil was frozen. The hydrogen deposition velocity values of all three methods were compared with one-week cumulative rain sums. Precipitation increases the soil moisture, which decreases the soil uptake rate. The measurements made in snow seasons showed that a thick snow layer also hindered gas diffusion, lowering the vd values. The H2 vd values were compared to the snow depth. A decaying exponential fit was obtained as a result. During a prolonged drought in summer 2006, soil moisture values were lower than in other summer months between 2005 and 2008. Such conditions were prevailing in summer 2006 when high chamber vd values were measured. The mixing ratio of molecular hydrogen has a seasonal variation. The lowest atmospheric mixing ratios were found in the late autumn when high deposition velocity values were still being measured. The carbon monoxide (CO) mixing ratio was also measured. Hydrogen and carbon monoxide are highly correlated in an urban environment, due to the emissions originating from traffic. After correction for the soil deposition of H2, the slope was 0.49±0.07 ppb (H2) / ppb (CO). Using the corrected hydrogen-to-carbon-monoxide ratio, the total hydrogen load emitted by Helsinki traffic in 2007 was 261 t (H2) a-1. Hydrogen, methane and carbon monoxide are connected with each other through the atmospheric methane oxidation process, in which formaldehyde is produced as an important intermediate. The photochemical degradation of formaldehyde produces hydrogen and carbon monoxide as end products. Examination of back-trajectories revealed long-range transportation of carbon monoxide and methane. The trajectories can be grouped by applying cluster and source analysis methods. Thus natural and anthropogenic emission sources can be separated by analyzing trajectory clusters.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A study of the component(s) in egg yolk responsible for gelation of yolk on freezing and thawing has shown that granule-free yolk plasma, obtained by high-speed centrifugation of yolk, has the capacity to gel. As with the whole yolk, gelation of yolk plasma on freezing and thawing could be inhibited by additives such as sugars, sodium chloride, proteolytic enzymes, and phospholipase-A. Phospholipase-C, which induces gelation of whole yolk at room temperature, has a similar effect on yolk plasma. Yolk plasma has been separated into aggregating (gelling) and soluble fractions by delipidation, using formic acid. Each of these fractions consists of three or four protein components, as observed by gel filtration, ultracentrifugation, and agar electrophoresis. The proteins are glycoproteins and contain bound hexoses, hexosamine, and sialic acid. The gelation of yolk has been attributed to the interactions between protein molecules following disruption of lipid-protein bonds.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

1. Accumulation of ubiquinone in the livers of rats exposed to a cold environment was shown to be due to both decreased catabolism during the entire experimental period and increased synthesis during an intermediate stage (10–20 days). 2. The increased endogenous synthesis in the cold-exposed rats was eliminated when ubiquinone accumulated in the liver after exposure for 40 days (coinciding with cclimatization), or by absorption of the exogenous dietary supply, possibly by the mechanism of end-product regulation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The problem of two-stream instability in plasma is studied by specifying the importance of initial magnetic field associated with the motion of the charged particles and the boundary effects. In Part I the accurate initial steady state is studied when the streams of electrons and ions move with different uniform speeds in plasmas with plane and cylindrical geometry. In Part II, in order to show the effects of finiteness and inhomogeneity of the system, small transverse plasma oscillations are studied in the case of plane plasmas. The role of plasma-sheath oscillations at the boundaries is found to be very important in driving the instabilities associated with the electromagnetic modes. The numerical estimates of the growth rates of the instability are given for the specific case of the physical data in discharge tubes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Glycoprotein isolated from sheep plasma was chemically modified, and the effect of chemical modification on biological activities and immunological cross reactions has been studied. The removal of sialic acid resulted in a change in the “overall conformation” of the glycoprotein as evidenced by a decrease in viscosity of the glycoprotein solution and an increased susceptibility of the glycoprotein to proteolytic enzymes. Sialic acid-free glycoprotein no longer inhibited the tryptic activity or prolonged the clotting time of plasma. However, it could react with the antiserum to sheep plasma glycoprotein. The periodate oxidation of sheep plasma glycoprotein resulted in a complete loss of inhibition of trypsin activity, prolongation of plasma clotting time, and the ability to cross-react with the rabbit antiserum. The significance of periodate oxidation in relation to the possible sequence of sugars in the carbohydrate prosthetic group in the glycoprotein is discussed. Iodination and heating in buffers of acid and alkaline pH values of sheep plasma glycoprotein resulted in complete loss of trypsin activity and ability to prolong plasma clotting time. Iodination of the glycoprotein did not affect the immunological cross-reactivity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A method for the delipidation of egg yolk plasma using phospholipase-C, n-heptane, and 1-butanol has been described. An aggregating protein fraction and a soluble protein fraction were separated by the action of phospholipase-C. The aggregating protein fraction freed of most of the lipids by treatment with n-heptane and 1-butanol was shown to be the apolipoproteins of yolk plasma, whereas the soluble proteins were identified as the livetins. Carbohydrate and the N-terminal amino acid analysis of these protein fractions are reported. A comparison of these protein fractions with the corresponding fractions obtained by formic acid delipidation of yolk plasma has been made. The gelation of yolk plasma by the action of phospholipase-C has been interpreted as an aggregation of lipoproteins caused by ionic interactions. The role of lecithin in maintaining the structural integrity of lipoproteins has been discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The stability of an incompressible inviscid, perfectly conducting cylindrical plasma against azimuthal disturbances in the presence of a monotonic decreasing magnetic field having a constant pitch is discussed by using energy principle. The results obtained by this principle are compared for m = 1 mode (which is a dangerous mode in which there is a lateral shift of the entire column) with that obtained by normal mode analysis. It is found that m = 1 mode is always unstable. Further, an axial line current, external axial field and the surface tension tend to stabilise m ≠ modes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the present note we have studied the harmonic and anharmonic oscillations of cylindrical plasma using Lagrangian formalism. In order to study the harmonic oscillations, the equations are linearized and the resulting equation for the displacement has been numerically solved. For situations present in thermonuclear reactors, the presence of axial magnetic field is found necessary to make the periods of oscillation to become comparable with the time required for the thermonuclear reactions to set in. A detailed analysis of the anharmonic oscillations reveals that the significant interaction is between the first and the second mode. The fundamental period of anharmonic oscillation is more than the corresponding period of harmonic oscillations by 9·2%. Graphs have been drawn for the amplitudes of relative variations in density and magnetic field and of the time-varying part of anharmonic oscillation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The electron-energy equation for an atomic radiating plasma is considered in this work. Using the atomic model of Bates, Kingston and McWhirter, the radiation loss-term valid for all optical thicknesses is obtained. A study of the energy gained by electrons in inelastic collisions shows that the radiation loss term can be neglected only for rapidly-decaying or fast-growing plasmas. Emission from optically thin plasmas is considered next and an exact expression is given for the total radiation loss in a recombination continuum. A derivation of the Kramers-Unsöld approximation is presented and the error involved in estimating the total emitted recombination radiation by this approximation is shown to be small.