986 resultados para Charlotte, Queen, consort of George III, King of Great Britain, 1744-1818
Resumo:
bk. 1
Resumo:
Keratinocyte growth factor (KGF) is a member of the fibroblast growth factor family. Portions of the gene encoding KGF were amplified during primate evolution and are present in multiple nonprocessed copies in the human genome. Nucleotide analysis of a representative sampling of these KGF-like sequences indicated that they were at least 95% identical to corresponding regions of the KGF gene. To localize these sequences to specific chromosomal sites in human and higher primates, we used fluorescence in situ hybridization. In human, using a cosmid probe encoding KGF exon 1, we assigned the location of the KGF gene to chromosome 15q15–21.1. In addition, copies of KGF-like sequences hybridizing only with a cosmid probe encoding exons 2 and 3 were localized to dispersed sites on chromosome 2q21, 9p11, 9q12–13, 18p11, 18q11, 21q11, and 21q21.1. The distribution of KGF-like sequences suggests a role for alphoid DNA in their amplification and dispersion. In chimpanzee, KGF-like sequences were observed at five chromosomal sites, which were each homologous to sites in human, while in gorilla, a subset of four of these homologous sites was identified; in orangutan two sites were identified, while gibbon exhibited only a single site. The chromosomal localization of KGF sequences in human and great ape genomes indicates that amplification and dispersion occurred in multiple discrete steps, with initial KGF gene duplication and dispersion taking place in gibbon and involving loci corresponding to human chromosomes 15 and 21. These findings support the concept of a closer evolutionary relationship of human and chimpanzee and a possible selective pressure for such dispersion during the evolution of higher primates.
Resumo:
1829 (July - Dec.)
Resumo:
Opinions concerning the 7th article of the treaty.
Resumo:
Account books listing patients, medicines administered, and fees charged by Dr. Thomas Cradock (1752-1821), primarily in Maryland, from 1786 to 1818. In addition to recording names, Cradock occasionally noted demographic information, the patient's location, or their occupation: from 1813 to 1816, he treated Richard Gent, a free African-American man; in 1813, he attended to John Bell, who lived in the Foggy Bottom neighborhood of Washington, D.C. Cradock further noted if the patient was a slave and the name of his or her owner. He would also administer care on behalf of corporate entities, such as Powhatan Factory, which apparently refused him payment. He also sometimes included a diagnosis: in the cases of a Mr. Rowles and Mrs. Violet West, he administered unspecified medicines for gonorrhea at a cost of ten dollars. Commonly prescribed drugs included emetics, cathartics, and anodynes. Cradock also provided smallpox vaccination for his patients. He accepted both cash and payment-in-kind. Tipped into the first volume is an envelope containing a letter from the Medical and Chirurgical Faculty of Maryland to Mrs. Thomas Craddock in 1899 requesting a loan of portrait of Dr. Thomas Craddock [sic]. The three volumes also each contain an index to patient names.
Resumo:
Time series of brightness temperatures (T(B)) from the Advanced Microwave Scanning Radiometer-Earth Observing System (AMSR-E) are examined to determine ice phenology variables on the two largest lakes of northern Canada: Great Bear Lake (GBL) and Great Slave Lake (GSL). T(B) measurements from the 18.7, 23.8, 36.5, and 89.0 GHz channels (H- and V- polarization) are compared to assess their potential for detecting freeze-onset/melt-onset and ice-on/ice-off dates on both lakes. The 18.7 GHz (H-pol) channel is found to be the most suitable for estimating these ice dates as well as the duration of the ice cover and ice-free seasons. A new algorithm is proposed using this channel and applied to map all ice phenology variables on GBL and GSL over seven ice seasons (2002-2009). Analysis of the spatio-temporal patterns of each variable at the pixel level reveals that: (1) both freeze-onset and ice-on dates occur on average about one week earlier on GBL than on GSL (Day of Year (DY) 318 and 333 for GBL; DY 328 and 343 for GSL); (2) the freeze-up process or freeze duration (freeze-onset to ice-on) takes a slightly longer amount of time on GBL than on GSL (about 1 week on average); (3) melt-onset and ice-off dates occur on average one week and approximately four weeks later, respectively, on GBL (DY 143 and 183 for GBL; DY 135 and 157 for GSL); (4) the break-up process or melt duration (melt-onset to ice-off) lasts on average about three weeks longer on GBL; and (5) ice cover duration estimated from each individual pixel is on average about three weeks longer on GBL compared to its more southern counterpart, GSL. A comparison of dates for several ice phenology variables derived from other satellite remote sensing products (e.g. NOAA Interactive Multisensor Snow and Ice Mapping System (IMS), QuikSCAT, and Canadian Ice Service Database) show that, despite its relatively coarse spatial resolution, AMSR-E 18.7 GHz provides a viable means for monitoring of ice phenology on large northern lakes.
Resumo:
Mode of access: Internet.
Resumo:
Head-piece; initial.