935 resultados para Cellulose decomposition
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Cellulose is the major constituent of most plants of interest as renewable sources of energy and is the most extensively studied form of biomass or biomass constituent. Predicting the mass loss and product yields when cellulose is subjected to increased temperature represents a fundamental problem in the thermal release of biomass energy. Unfortunately, at this time, there is no internally consistent model of cellulose pyrolysis that can organize the varied experimental data now available or provide a guide for additional experiments. Here, we present a model of direct cellulose pyrolysis using a multistage decay scheme that we first presented in the IJQC in 1984. This decay scheme can, with the help of an inverse method of assigning reaction rates, provide a reasonable account of the direct fast pyrolysis yield measurements. The model is suggestive of dissociation states of d-glucose (C6H10O5,), the fundamental cellulose monomer. The model raises the question as to whether quantum chemistry could now provide the dissociation energies for the principal breakup modes of glucose into C-1, C-2, C-3, C-4, and C-5 compounds. These calculations would help in achieving a more fundamental description of volatile generation from cellulose pyrolysis and could serve as a guide for treating hemicellulose and lignin, the other major biomass constituents. Such advances could lead to the development of a predictive science of biomass pyrolysis that would facilitate the design of liquifiers and gasifiers based upon renewable feedstocks. (C) 1998 John Wiley & Sons, Inc.
Resumo:
Dilute acid hydrolysis studies were performed on forest residues of Eucalyptus grandis, in a cylindrical reactor of stainless steel. The kinetics of this hydrolysis reaction was investigated employing 0.65% sulfuric acid, a residue/acid solution ratio of 1/9 (w/w), temperatures of 130, 140, 150, and 160 degrees C, and reaction times in the range 20-100 min. The results showed that, under the optimized conditions of acid hydrolysis employed in this study, the variables temperature and reaction time had a strong influence on hemicellulose removal and a small influence on the degree of lignin and cellulose removal. The highest xylose extraction yield was 87.6% attained at 160 degrees C, after 70 min reaction time, simultaneously with the formation of decomposition products, namely 2.8% acetic acid, 0.6% furfural, and 0.06% 5-hydroxymethylfurfural. A similar xylose extraction yield (82.8%) was observed at 150 degrees C after 100 min, with the formation of 3.2% acetic acid, 1.0% furfural, and 0.07% 5-hydroxymethylfurfural. The kinetic parameters determined at 130, 140, 150, and 160 degrees C for degradation of xylan present in the hemicellulose of the eucalyptus forest residue during the formation of xylose were the first-order reaction rate constants (k) for each temperature, 1.22 x 10(-4), 2.12 x 10(-4), 5.43 x 10(-4), and 9.05 x 10(-4) s(-1), respectively, and an activation energy (E-a) of 101.3 kJ mol(-1).
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
A composite of cellulose extracted from bagasse with Nb2O5 center dot nH(2)O in three different proportions (16.67, 37.5 and 50.0 wt%) was prepared using the co-precipitation method. The materials were characterized by X-ray diffractometry (XRD), Fourier transform infra-red spectroscopy (FTIR), thermogravimetric analysis (TG/DTG), differential scanning calorimetry (DSC) and scanning electron microscopy (SEM). TG data obtained show that the presence of inorganic material influenced slightly the stability of the hybrid material. The precipitation of 16.67 wt.% of oxide was sufficient to inhibit the combustion peaks present in the DSC curve of cellulose. This work will help find new applications for these materials. Published by Elsevier Ltd.
Resumo:
In this paper is shown the development of a transmission line, based on discrete circuit elements that provide responses directly in the time domain and phase. This model is valid for ideally transposed rows represent the phases of each of the small line segments are separated in their modes of propagation and the voltage and current are calculated at the modal field. However, the conversion phase-mode-phase is inserted in the state equations which describe the currents and voltages along the line of which there is no need to know the user of the model representation of the theory in the field lines modal.
Resumo:
This work involved the development and application of a new analytical procedure for in-situ characterization of the lability of metal species in aquatic systems by using a system equipped with a diffusion membrane and cellulose organomodified with p-aminobenzoic acid groups (DM-Cell-PAB). To this end, the DM-Cell-PAB system was prepared by adding cellulose organomodified with p-aminobenzoic acid groups (Cell-PAB) to pre-purified cellulose bags. After the DM-Cell-PAB system was sealed, it was examined in the laboratory. The in-situ application involved immersing the DM-Cell-PAB system in two different rivers, enabling us to study the relative lability of metal species (Cu, Cd, Fe, Mn, and Ni) as a function of time and quantity of exchanger. The procedure is simple and opens up a new perspective for understanding environmental phenomena relating to the complexation, transport, stability, and lability of metal species in aquatic systems rich in organic matter.
Resumo:
Bacterial cellulose (BC) hydrated membranes present nanometric reticulated structure that can be used as a template in the preparation of new organic-inorganic hybrids. BC-silica hybrids were prepared from BC membranes and tetraethoxysilane, (TEOS) at neutral pH conditions at room temperature. Macroscopically homogeneous membranes were obtained containing up to 66 wt.% of silica spheres, 20-30 nm diameter. Scanning electron micrographs clearly show the silica spheres attached to cellulose microfibrils. By removing the cellulose, the silica spheres can be easily recovered. The new hybrids are stable up to 300 degrees C and display a broad emission band under UV excitation assigned to oxygen-related defects at the silica particles surface. Emission color can be tuned by changing the excitation wavelength.
Resumo:
Cellulose nanowhiskers were prepared by sulfuric acid hydrolysis from coconut husk fibers which had previously been submitted to a delignification process. The effects of preparation conditions on the thermal and morphological behavior of the nanocrystals were investigated. Cellulose nanowhisker suspensions were characterized by Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), thermogravimetric analysis (TGA) and X-ray diffraction. Results showed that it was possible to obtain ultrathin cellulose nanowhiskers with diameters as low as 5 nm and aspect ratio of up to 60. A possible correlation between preparation conditions and particle size was not observed. Higher residual lignin content was found to increase thermal stability indicating that by controlling reaction conditions one can tailor the thermal properties of the nanowhiskers. Published by Elsevier Ltd.