981 resultados para Carbon atoms


Relevância:

20.00% 20.00%

Publicador:

Resumo:

UPS and XPS studies indicate that carbon monoxide preferentially adsorbs dissociatively on the surfaces of the metallic glasses, Ni76B12Si12 and Fe40Ni38Mo4B18, suggesting that such metglasses could be potential catalysts for some of the reactions involving CO.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Silicon has demonstrated great potential as anode materials for next-generation high-energy density rechargeable lithium ion batteries. However, its poor mechanical integrity needs to be improved to achieve the required cycling stability. Nano-structured silicon has been used to prevent the mechanical failure caused by large volume expansion of silicon. Unfortunately, pristine silicon nanostructures still suffer from quick capacity decay due to several reasons, such as formation of solid electrolyte interphase, poor electrical contact and agglomeration of nanostructures. Recently, increasing attention has been paid to exploring the possibilities of hybridization with carbonaceous nanostructures to solve these problems. In this review, the recent advances in the design of carbon-silicon nanohybrid anodes and existing challenges for the development of high-performance lithium battery anodes are briefly discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There is a need to develop indicators that relate the dynamics of soil organic carbon (SOC) with changes in land management of horticultural production systems. Soil nematode communities have been shown to be sensitive to land management changes, but often do not include plant-parasites in the calculation of soil nematode community indices. The concept of nematode functional guilds was used to estimate the proportion of carbon entering the soil ecosystem through different channels, such as through decomposition of organic material, the detrital channel, through the roots of plants, the root channel or recycled through the activity of predators, a predation channel. Calculations of the indices were developed and validated using case studies in the north Queensland banana industry. Firstly, a survey of organic and conventional banana farms found a greater proportion of C entering the soil ecosystem through the detrital channel and a reduced proportion of C originating through the root channel at the organic sites relative to conventional sites. Secondly, a field experiment comparing compost amendments, found application of fresh compost significantly increased the proportion of C entering the soil ecosystem through the detrital channel and decreased proportion of C originating from the root channel. Thirdly, a field experiment comparing 'conventional' banana production to an 'alternative' system which incorporated organic matter, found the proportion of C entering the soil ecosystem through the root channel was significantly greater in the conventional systems relative to the alternative system. This research demonstrates that nematode indices can be used to assess horticultural systems, by indicating the origins of SOC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Molecular dynamics simulations of the orientational dynamics of water molecules confined inside narrow carbon nanorings reveal that reorientational relaxation is mediated by large amplitude angular jumps. The distribution of waiting time between jumps peaks at about 60 fs, and has a slowly decaying exponential tail with a timescale of about 440 fs. These time scales are much faster than the mean waiting time between jumps of the water molecules in bulk.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Iron nanoparticles are embedded in multiwall carbon nanotubes by the chemical vapor deposition, where benzene and ferrocene are taken as precursor materials. Varying quantity of iron particles are embedded in these tubes by taking different amount of ferrocene. These particles exhibit a magnetic moment up to 98 emu/g and an enhanced coercivity in the range of 500-2000 Oe. Negative magnetoresistance similar to 10% is observed in the presence of magnetic field up to 11 T applied at various temperatures in the range of 1.3 K-300 K. It is argued that the enhanced coercivity is due to the shape anisotropy. The negative magnetoresistance is believed to be due to the weak localization and spin dependent scattering of electrons by the ferromagnetic particles. In addition we also observe a dependence of the magnetoresistance on the direction of applied field and this is correlated with the shape anisotropy of the Fe particles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Microwave treated water soluble and amide functionalized single walled carbon nanotubes have been investigated using femtosecond degenerate pump-probe and nonlinear transmission experiments. The time resolved differential transmission using 75 femtosecond pulse with the central wavelength of 790 nm shows a bi-exponential ultrafast photo-bleaching with time constants of 160 fs (130 fs) and 920 fs (300 fs) for water soluble (amide functionalized) nanotubes. Open and closed aperture z-scans show saturation absorption and positive (negative) nonlinear refraction for water soluble (amide functionalized) nanotubes. Two photon absorption coefficient, beta(0) similar to 250 cm/GW (650 cm/GW) and nonlinear index, gamma similar to 15 cm(2)/pW (-30 cm(2)/pW) are obtained from the theoretical fit in the saturation limit to the data for two types of nanotubes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The influence of grazing management on total soil organic carbon (SOC) and soil total nitrogen (TN) in tropical grasslands is an issue of considerable ecological and economic interest. Here we have used linear mixed models to investigate the effect of grazing management on stocks of SOC and TN in the top 0.5 m of the soil profile. The study site was a long-term pasture utilization experiment, 26 years after the experiment was established for sheep grazing on native Mitchell grass (Astrebla spp.) pasture in northern Australia. The pasture utilization rates were between 0% (exclosure) and 80%, assessed visually. We found that a significant amount of TN had been lost from the top 0.1 m of the soil profile as a result of grazing, with 80% pasture utilization resulting in a loss of 84 kg ha−1 over the 26-year period. There was no significant effect of pasture utilization rate on TN when greater soil depths were considered. There was no significant effect of pasture utilization rate on stocks of SOC and soil particulate organic carbon (POC), or the C:N ratio at any depth; however, visual trends in the data suggested some agreement with the literature, whereby increased grazing pressure appeared to: (i) decrease SOC and POC stocks; and, (ii) increase the C:N ratio. Overall, the statistical power of the study was limited, and future research would benefit from a more comprehensive sampling scheme. Previous studies at the site have found that a pasture utilization rate of 30% is sustainable for grazing production on Mitchell grass; however, given our results, we conclude that N inputs (possibly through management of native N2-fixing pasture legumes) should be made for long-term maintenance of soil health, and pasture productivity, within this ecosystem.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The world is facing an energy crisis due to exponential population growth and limited availability of fossil fuels. Over the last 20 years, carbon, one of the most abundant materials found on earth, and its allotrope forms such as fullerenes, carbon nanotubes and graphene have been proposed as sources of energy generation and storage because of their extraordinary properties and ease of production. Various approaches for the synthesis and incorporation of carbon nanomaterials in organic photovoltaics and supercapacitors have been reviewed and discussed in this work, highlighting their benefits as compared to other materials commonly used in these devices. The use of fullerenes, carbon nanotubes and graphene in organic photovoltaics and supercapacitors is described in detail, explaining how their remarkable properties can enhance the efficiency of solar cells and energy storage in supercapacitors. Fullerenes, carbon nanotubes and graphene have all been included in solar cells with interesting results, although a number of problems are still to be overcome in order to achieve high efficiency and stability. However, the flexibility and the low cost of these materials provide the opportunity for many applications such as wearable and disposable electronics or mobile charging. The application of carbon nanotubes and graphene to supercapacitors is also discussed and reviewed in this work. Carbon nanotubes, in combination with graphene, can create a more porous film with extraordinary capacitive performance, paving the way to many practical applications from mobile phones to electric cars. In conclusion, we show that carbon nanomaterials, developed by inexpensive synthesis and process methods such as printing and roll-to-roll techniques, are ideal for the development of flexible devices for energy generation and storage – the key to the portable electronics of the future.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A thermodynamic analysis is presented for the two stage thermal compression process for an adsorption refrigeration cycle with HFC-134a as the working fluid and activated carbon as the adsorbent. Three specimens of varying achievable packing densities were evaluated. The influence of evaporating, condensing/adsorption and desorption temperatures was assessed through three performance indicators, namely,the uptake efficiency, the coefficient of performance and the exergetic efficiency. Conditions under which a two stage thermal compression process performs better than the single stage unit are identified. It is concluded that two stage thermal compression will be a viable proposition when the heat source temperature is low or when adsorption characteristics are weak or when adequate packing densities are difficult to realize. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Environmentally benign and economical methods for the preparation of industrially important hydroxy acids and diacids were developed. The carboxylic acids, used in polyesters, alkyd resins, and polyamides, were obtained by the oxidation of the corresponding alcohols with hydrogen peroxide or air catalyzed by sodium tungstate or supported noble metals. These oxidations were carried out using water as a solvent. The alcohols are also a useful alternative to the conventional reactants, hydroxyaldehydes and cycloalkanes. The oxidation of 2,2-disubstituted propane-1,3-diols with hydrogen peroxide catalyzed by sodium tungstate afforded 2,2-disubstituted 3-hydroxypropanoic acids and 1,1-disubstituted ethane-1,2-diols as products. A computational study of the Baeyer-Villiger rearrangement of the intermediate 2,2-disubstituted 3-hydroxypropanals gave in-depth data of the mechanism of the reaction. Linear primary diols having chain length of at least six carbons were easily oxidized with hydrogen peroxide to linear dicarboxylic acids catalyzed by sodium tungstate. The Pt/C catalyzed air oxidation of 2,2-disubstituted propane-1,3-diols and linear primary diols afforded the highest yield of the corresponding hydroxy acids, while the Pt, Bi/C catalyzed oxidation of the diols afforded the highest yield of the corresponding diacids. The mechanism of the promoted oxidation was best described by the ensemble effect, and by the formation of a complex of the hydroxy and the carboxy groups of the hydroxy acids with bismuth atoms. The Pt, Bi/C catalyzed air oxidation of 2-substituted 2-hydroxymethylpropane-1,3-diols gave 2-substituted malonic acids by the decarboxylation of the corresponding triacids. Activated carbon was the best support and bismuth the most efficient promoter in the air oxidation of 2,2-dialkylpropane-1,3-diols to diacids. In oxidations carried out in organic solvents barium sulfate could be a valuable alternative to activated carbon as a non-flammable support. In the Pt/C catalyzed air oxidation of 2,2-disubstituted propane-1,3-diols to 2,2-disubstituted 3-hydroxypropanoic acids the small size of the 2-substituents enhanced the rate of the oxidation. When the potential of platinum of the catalyst was not controlled, the highest yield of the diacids in the Pt, Bi/C catalyzed air oxidation of 2,2-dialkylpropane-1,3-diols was obtained in the regime of mass transfer. The most favorable pH of the reaction mixture of the promoted oxidation was 10. The reaction temperature of 40°C prevented the decarboxylation of the diacids.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In recent years, concern has arisen over the effects of increasing carbon dioxide (CO2) in the earth's atmosphere due to the burning of fossil fuels. One way to mitigate increase in atmospheric CO2 concentration and climate change is carbon sequestration to forest vegeta-tion through photosynthesis. Comparable regional scale estimates for the carbon balance of forests are therefore needed for scientific and political purposes. The aim of the present dissertation was to improve methods for quantifying and verifying inventory-based carbon pool estimates of the boreal forests in the mineral soils. Ongoing forest inventories provide a data based on statistically sounded sampling for estimating the level of carbon stocks and stock changes, but improved modelling tools and comparison of methods are still needed. In this dissertation, the entire inventory-based large-scale forest carbon stock assessment method was presented together with some separate methods for enhancing and comparing it. The enhancement methods presented here include ways to quantify the biomass of understorey vegetation as well as to estimate the litter production of needles and branches. In addition, the optical remote sensing method illustrated in this dis-sertation can be used to compare with independent data. The forest inventory-based large-scale carbon stock assessment method demonstrated here provided reliable carbon estimates when compared with independent data. Future ac-tivity to improve the accuracy of this method could consist of reducing the uncertainties regarding belowground biomass and litter production as well as the soil compartment. The methods developed will serve the needs for UNFCCC reporting and the reporting under the Kyoto Protocol. This method is principally intended for analysts or planners interested in quantifying carbon over extensive forest areas.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In Finland, peat harvesting sites are utilized down almost to the mineral soil. In this situation the properties of mineral subsoil are likely to have considerable influence on the suitability for the various after-use forms. The aims of this study were to recognize the chemical and physical properties of mineral subsoils possibly limiting the after-use of cut-over peatlands, to define a minimum practice for mineral subsoil studies and to describe the role of different geological areas. The future percentages of the different after-use forms were predicted, which made it possible to predict also carbon accumulation in this future situation. Mineral subsoils of 54 different peat production areas were studied. Their general features and grain size distribution was analysed. Other general items studied were pH, electrical conductivity, organic matter, water soluble nutrients (P, NO3-N, NH4-N, S and Fe) and exchangeable nutrients (Ca, Mg and K). In some cases also other elements were analysed. In an additional case study carbon accumulation effectiveness before the intervention was evaluated on three sites in Oulu area (representing sites typically considered for peat production). Areas with relatively sulphur rich mineral subsoil and pool-forming areas with very fine and compact mineral subsoil together covered approximately 1/5 of all areas. These areas were unsuitable for commercial use. They were recommended for example for mire regeneration. Another approximate 1/5 of the areas included very coarse or very fine sediments. Commercial use of these areas would demand special techniques - like using the remaining peat layer for compensating properties missing from the mineral subsoil. One after-use form was seldom suitable for one whole released peat production area. Three typical distribution patterns (models) of different mineral subsoils within individual peatlands were found. 57 % of studied cut-over peatlands were well suited for forestry. In a conservative calculation 26% of the areas were clearly suitable for agriculture, horticulture or energy crop production. If till without large boulders was included, the percentage of areas suitable to field crop production would be 42 %. 9-14 % of all areas were well suitable for mire regeneration or bird sanctuaries, but all areas were considered possible for mire regeneration with correct techniques. Also another 11 % was recommended for mire regeneration to avoid disturbing the mineral subsoil, so total 20-25 % of the areas would be used for rewetting. High sulphur concentrations and acidity were typical to the areas below the highest shoreline of the ancient Litorina sea and Lake Ladoga Bothnian Bay zone. Also differences related to nutrition were detected. In coarse sediments natural nutrient concentration was clearly higher in Lake Ladoga Bothnian Bay zone and in the areas of Svecokarelian schists and gneisses, than in Granitoid area of central Finland and in Archaean gneiss areas. Based on this study the recommended minimum analysis for after-use planning was for pH, sulphur content and fine material (<0.06 mm) percentage. Nutrition capacity could be analysed using the natural concentrations of calcium, magnesium and potassium. Carbon accumulation scenarios were developed based on the land-use predictions. These scenarios were calculated for areas in peat production and the areas released from peat production (59300 ha + 15 671 ha). Carbon accumulation of the scenarios varied between 0.074 and 0.152 million t C a-1. In the three peatlands considered for peat production the long term carbon accumulation rates varied between 13 and 24 g C m-2 a-1. The natural annual carbon accumulation had been decreasing towards the time of possible intervention.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pristine and molybdenum filled double walled carbon nanotubes (DWNTs) suspended in D2O show excellent ultrafast optical switching properties investigated through femtosecond Z-scan and degenerate pump-probe method using 50 fs pulses with central photon energy of 1.57 eV. For pristine-DWNT, the two photon absorption coefficient, beta and nonlinear refraction coefficient, n2 are 4.9×10−8 cm/W, and 9.5×10−11 cm2/W, respectively, which yield one photon figure of merit, W=133 and two photon figure of merit, T=0.4. The degenerate pump-probe measurements show strong photoinduced bleaching with biexponential decay with time constants ~150 and 600 fs. ©2009 American Institute of Physics