969 resultados para Calculated based on Forel-Ule scale, FU21
Resumo:
Combining ionic liquids (ILs) with polymers offers the prospect of new applications, where they surpass the performance of conventional media, such as organic solvents, giving advantages in terms of improved safety and a higher operating temperature range. In this work we have investigated the morphology, thermal and electrochemical properties of polymer electrolytes prepared through the addition of con- trolled quantities of the cholinium based IL N,N,N-trimethyl-N-(2-hydroxyethyl)ammonium bis(trifluo- romethylsulfonyl)imide ([N1 1 1 2(OH)] [NTf2]) to a deoxyribonucleic acid (DNA) host network. These novel IL-based electrolytes have been analyzed aiming at applications in electrochemical devices. An optimized sample showed good thermal stability up to 155 °C and a wide electrochemical window of ~3.5 V. The highest conductivity was registered for the DNA[N1 1 1 2(OH)][NTf2] (1:1) (2.82 × 10-5 and 1.09 × 10-3 S cm-1 at 30 and 100 °C, respectively).
Resumo:
Biopolymer-based materials have been of particular interest as alternatives do synthetic polymers due to their low toxicity, biodegradability and biocompatibility. Among them, chitosan is one of the most studied ones and has recently been investigated for the application as solid state polymer electrolytes. Furthermore, it can serve as a host for luminescent species such as rare earth ions, giving rise to materials with increased functionality, of particular interest for electrochemical devices. In this study, we investigate chitosan based luminescent materials doped wit Eu3+ and Li+ triflate salts from the structural, photophysical and conductivity points of view. Because the host presents a broad emission band in the blue to green, while Eu3+ emits in the red, fine tuning of emission colour and/or generation of white light is possible by optimizing composition and excitation scheme. Europium lifetimes (5D0) are in the range 270 – 350 µs and quantum yields are as high as 2%. Although Li+ does not interfere with the luminescent properties, it grants ion-conducting properties to the material suggesting that a combination of both properties could be further explored in multifunctional device.
Resumo:
This work intends to evaluate the mechanical properties of eco-composites reinforced with natural fiber fabrics in different fibrous arrangements, with a thermoset matrix of natural origin. When integrated by hand lay-up process, the composites obtained present excellent mechanical characteristics combined with environment friendly features, being able to be used in various industrial sectors.
Resumo:
Supramolecular hydrogels rely on small molecules that self-assemble in water as a result of the cooperative effect of several relatively weak intermolecular interactions. Peptide-based low molecular weight hydrogelators have attracted enormous interest owing to the simplicity of small molecules combined with the versatility and biocompatibility of peptides. In this work, naproxen, a well known non-steroidal anti-inflammatory drug, was N-conjugated with various dehydrodipeptides to give aromatic peptide amphiphiles that resist proteolysis. Molecular dynamics simulations were used to obtain insight into the underlying molecular mechanism of self-assembly and to rationalize the design of this type of hydrogelators. The results obtained were in excellent agreement with the experimental observations. Only dehydrodipeptides having at least one aromatic amino acid gave hydrogels. The characterization of the hydrogels was carried out using transmission electron microscopy (TEM), circular dichroism (CD), fluorescence spectroscopy and also rheological assays.
Resumo:
Nowadays, considering the high variety of construction products, adequate material selection, based on their properties and function, becomes increasingly important. In this research, a ranking procedure developed by Czarnecki and Lukowski is applied in mortars with incorporation of phase change materials (PCM). The ranking procedure transforms experimental results of properties into one numerical value. The products can be classified according to their individual properties or even an optimized combination of different properties. The main purpose of this study was the ranking of mortars with incorporation of different contents of PCM based in different binders. Aerial lime, hydraulic lime, gypsum and cement were the binders studied. For each binder, three different mortars were developed. Reference mortars, mortars with incorporation of 40% of PCM and mortars with incorporation of 40% of PCM and 1% of fibers, were tested. Results show that the incorporation of PCM in mortars changes their global performance.
Resumo:
Manganese ferrite nanoparticles with a size distribution of 26 ± 7 nm (from TEM measurements) were synthesized by the coprecipitation method. The obtained nanoparticles exhibit a superparamagnetic behaviour at room temperature with a magnetic squareness of 0.016 and a coercivity field of 6.3 Oe. These nanoparticles were either entrapped in liposomes (aqueous magnetoliposomes, AMLs) or covered with a lipid bilayer, forming solid magnetoliposomes (SMLs). Both types of magnetoliposomes, exhibiting sizes below or around 150 nm, were found to be suitable for biomedical applications. Membrane fusion between magnetoliposomes (both AMLS and SMLs) and GUVs (giant unilamellar vesicles), the latter used as models of cell membranes, was confirmed by F¨orster Resonance Energy Transfer (FRET) assays, using a NBD labeled lipid as the energy donor and Nile Red or rhodamine B-DOPE as the energy acceptor. A potential antitumor thienopyridine derivative was successfully incorporated into both aqueous and solid magnetoliposomes, pointing to a promising application of these systems in oncological therapy, simultaneously as hyperthermia agents and nanocarriers for antitumor drugs.
Resumo:
Programa Doutoral em Engenharia Biomédica
Resumo:
This paper reports on an innovative approach to measuring intraluminal pressure in the upper gastrointestinal (GI) tract, especially monitoring GI motility and peristaltic movements. The proposed approach relies on thin-film aluminum strain gauges deposited on top of a Kapton membrane, which in turn lies on top of an SU-8 diaphragm-like structure. This structure enables the Kapton membrane to bend when pressure is applied, thereby affecting the strain gauges and effectively changing their electrical resistance. The sensor, with an area of 3.4 mm2, is fabricated using photolithography and standard microfabrication techniques (wet etching). It features a linear response (R2 = 0.9987) and an overall sensitivity of 2.6 mV mmHg−1. Additionally, its topology allows a high integration capability. The strain gauges’ responses to pressure were studied and the fabrication process optimized to achieve high sensitivity, linearity, and reproducibility. The sequential acquisition of the different signals is carried out by a microcontroller, with a 10-bit ADC and a sample rate of 250 Hz. The pressure signals are then presented in a user-friendly interface, developed using the Integrated Development Environment software, QtCreator IDE, for better visualization by physicians.
Resumo:
Publicado em "NanoPT2016 book of abstracts"
Resumo:
The stem cell niche organization and dynamics provide valuable cues for the development of mimetic environments that could have potential to stimulate the regenerative process. We propose the use of biodegradable biomaterials to produce closed miniaturised structures able to encapsulate different cell types or bioactive molecules. In particular, capsules are fabricated using the so-called layer-by-layer technology, where the consecutive (nano-sized) layers are well stabilized by electrostatic interactions or other weak forces. Using alginate-based spherical templates containing cells or other elements (e.g. proteins, magnetic nanoparticles, microparticles) it is possible to produce liquefied capsules that may entrap the entire cargo under mild conditions. The inclusion of liquefied micropcapsules may be used to produce hierarchical compartmentalised systems for the delivery of bioactive agents. The presence of solid microparticles inside such capsules offers adequate surface area for adherent cell attachment increasing the biological performance of these hierarchical systems, while maintain both permeability and injectability. We demonstrated that the encapsulation of distinct cell types (including mesenchymal stem cells and endothelial cells) enhances the osteogenic capability of this system, that could be useful in bone tissue engineering applications.
Resumo:
Lithium-ion battery cathodes have been fabricated by screen-printing through the development of CLiFePO4 inks. It is shown that shear thinning polymer solutions in N-methyl-2-pyrrolidone (NMP) with Newtonian viscosity above 0.4 Pa s are the best binders for formulating a cathode paste with satisfactory film forming properties. The paste shows an elasticity of the order of 500 Pa and, after shear yielding, shows an apparent viscosity of the order of 3 Pa s for shear rates corresponding to those used during screen-printing. The screen-printed cathode produced with a thickness of 26 mm shows a homogeneous distribution of the active material, conductive additive and polymer binder. The total resistance and diffusion coefficient of the cathode are 450 V and 2.5 10 16cm2 s 1, respectively. The developed cathodes show an initial discharge capacity of 48.2 mAh g 1 at 5C and a discharge value of 39.8 mAh g 1 after 50 cycles. The capacity retention of 83% represents 23% of the theoretical value (charge and/or discharge process in twenty minutes), demonstrating the good performance of the battery. Thus, the developed C-LiFePO4 based inks allow to fabricate screen-printed cathodes suitable for printed lithium-ion batteries
Resumo:
Dissertação de mestrado integrado em Engenharia Biomédica (área de especialização em Informática Médica)
Resumo:
OBJECTIVE: To assess the relation between coronary artery disease and the calcification index on helical computed tomography. METHOD: We studied 22 patients (ages ranging from 40 to 70 years) who underwent coronary angiography because of chest pain suggestive of angina pectoris. Findings on coronary angiography were classified as follows: significant obstructive disease (stenosis > or = 50%), nonobstructive disease (stenosis <50%), and no disease. With no previous knowledge of the results of the coronary angiography and within 7 days, helical computed tomography of the chest was performed. Then, data of the coronary angiography were correlated with the calcification index obtained by helical computed tomography. RESULTS: The sensitivity of helical computed tomography to the presence of significant obstructive lesions on coronary angiography was 87.5%, specificity was 100%, and negative and positive predictive values were 75% and 100%, respectively. The mean calcification index was greater in patients with severe coronary lesions, mainly when involvement of 2 or 3 vessels occurred, than that in patients with no coronary artery disease or with nonobstructive coronary artery lesions (p<0.05). CONCLUSION: Helical computed tomography is an effective method for detecting and quantifying coronary artery calcification, and it has proved to be sensitive to and specific for the noninvasive diagnosis of coronary artery stenosis.
Resumo:
OBJECTIVE: The initial site of myocardial infarction (MI) may influence the prevalence of ventricular late potentials (VLP), high-frequency signals, due to the time course of ventricular activation. The prevalence of VLP in a period of more than 2 years after acute MI was assessed focusing on the initially injured wall . METHODS: The prevalence of VLP in a late phase after MI (median of 924 days) in anterior/antero-septal and inferior/infero-dorsal wall lesion was analyzed using signal-averaged electrocardiogram in time domain. The diagnostic performance of the filters employed for analysis on was tested at high-pass cut-off frequencies of 25 Hz, 40 Hz and 80 Hz. RESULTS: The duration of the ventricular activation and its terminal portion were larger in inferior than anterior infarction, at high-pass cut-off frequencies of 40 Hz and 80 Hz. In patients with ventricular tachycardia, these differences were more remarked. The prevalence of ventricular late potentials was three times greater in inferior than anterior infarction. CONCLUSION: Late after myocardial infarction, the prevalence and the duration of ventricular late potentials are greater in lesions of inferior/infero-dorsal than anterior/antero-septal wall confirming their temporal process, reflecting their high-frequency content.
Resumo:
Los requerimientos de métodos analíticos que permitan realizar determinaciones más eficientes en diversas ramas de la Química, así como el gran desarrollo logrado por la Nanobiotecnología, impulsaron la investigación de nuevas alternativas de análisis. Hoy, el campo de los Biosensores concita gran atención en el primer mundo, sin embargo, en nuestro país es todavía un área de vacancia, como lo es también la de la Nanotecnología. El objetivo de este proyecto es diseñar y caracterizar nuevos electrodos especialmente basados en el uso de nanoestructuras y estudiar aspectos básicos de la inmovilización de enzimas, ADN, aptámeros, polisacáridos y otros polímeros sobre dichos electrodos a fin de crear nuevas plataformas de biorreconocimiento para la construcción de (bio)sensores electroquímicos dirigidos a la cuantificación de analitos de interés clínico, farmaco-toxicológico y ambiental.Se estudiarán las propiedades de electrodos de C vítreo, Au, "screen printed" y compósitos de C modificados con nanotubos de C (CNT) y/o nanopartículas (NP) de oro y/o nanoalambres empleando diversas estrategias. Se investigarán nuevas alternativas de inmovilización de las biomoléculas antes mencionadas sobre dichos electrodos, se caracterizarán las plataformas resultantes y se evaluarán sus posibles aplicaciones analíticas al desarrollo de biosensores con enzimas y ADNs como elementos de biorreconocimiento. Se funcionalizarán CNT con polímeros comerciales y sintetizados en nuestro laboratorio modificados con moléculas bioactivas. Se diseñarán y caracterizarán nuevas arquitecturas supramoleculares basadas en el autoensamblado de policationes, enzimas y ADNs sobre Au. Se evaluarán las propiedades catalíticas de NP de magnetita y de perovskitas de Mn y su aplicación al desarrollo de biosensores enzimáticos. Se diseñarán biosensores que permitan la detección altamente sensible y selectiva de secuencias específicas de ADNs de interés clínico. Se estudiará la interacción de genotóxicos con ADN (en solución e inmovilizado) y se desarrollarán biosensores que permitan su cuantificación. Se construirán biosensores enzimáticos para la cuantificación de bioanalitos, especialmente glucosa, fenoles y catecoles, y sensores electroquímicos para la determinación de neurotransmisores, ácido úrico y ácido ascórbico. Se diseñarán nuevos aptasensores electroquímicos para la cuantificación de biomarcadores, comenzando por lisozima y trombina y continuando con otros de interés regional/nacional.Se emplearán las siguientes técnicas: voltamperometrías cíclica (CV), de pulso diferencial (DPV) y de onda cuadrada (SWV); "stripping" potenciométrico a corriente constante (PSA); elipsometría; microbalanza de cristal de cuarzo con cálculo de pérdida de energía por disipación (QCM-D); resonancia de plasmón superficial con detección dual (E-SPR); espectroscopía de impedancia electroquímica (EIE); microscopías de barrido electroquímico (SECM), de barrido electrónico (SEM), de transmisión (TEM) y de fuerzas atómicas (AFM); espectrofotometría UV-visible; espectroscopías IR, Raman, de masas, RMN.Se espera que la inclusión de los CNT y/o de las NP metálicas y/o de los nanoalambres en los diferentes electrodos permita una mejor transferencia de carga de diversos analitos y por ende una detección más sensible y selectiva de bioanalitos empleando enzimas, ADN y aptámeros como elementos de biorreconocimiento. Se espera una mayor eficiencia en los aptasensores respecto de los inmunosensores, lo que permitirá la determinacion selectiva de diversos biomarcadores. La modificación de electrodos con nanoestructuras posibilitará la detección altamente sensible y selectiva del evento de hibridación. La respuesta obtenida luego de la interacción de genotóxicos con ADN permitirá un mejor conocimiento de la asociación establecida, de la cinética y de las constantes termodinámicas. Los neurotransmisores podrán ser determinados a niveles nanomolares aún en muestras complejas.