828 resultados para Beat movement
Resumo:
Disorganized behavior is a key symptom of schizophrenia. The objective assessment of disorganized behavior is particularly challenging. Actigraphy has enabled the objective assessment of motor behavior in various settings. Reduced motor activity was associated with negative syndrome scores, but simple motor activity analyses were not informative on other symptom dimensions. The analysis of movement patterns, however, could be more informative for assessing schizophrenia symptom dimensions. Here, we use time series analyses on actigraphic data of 100 schizophrenia spectrum disorder patients. Actigraphy recording intervals were set at 2 s. Data from 2 defined 60-min periods were analyzed, and partial autocorrelations of the actigraphy time series indicated predictability of movements in each individual. Increased positive syndrome scores were associated with reduced predictability of movements but not with the overall amount of movement. Negative syndrome scores were associated with low activity levels but unrelated with predictability of movement. The factors disorganization and excitement were related to movement predictability but emotional distress was not. Thus, the predictability of objectively assessed motor behavior may be a marker of positive symptoms and disorganized behavior. This behavior could become relevant for translational research.
Resumo:
Background: Motor symptoms are frequent phenomena across the entire course of schizophrenia1. Some have argued that disorganized behavior was associated with aberrant motor behavior. We have studied the association of motor disturbances and disorganization in two projects focusing on the timing of movements. Method: In two studies, we assessed motor behavior and psychopathology. The first study applied a validated test of upper limb apraxia in 30 schizophrenia patients2,3. We used standardized video assessments of hand gestures by a blinded rater. The second study tested the stability of movement patterns using time series analysis in actigraphy data of 100 schizophrenia patients4. Both stability of movement patterns and the overall amount of movement were calculated from data of two hours with high degrees of social interaction comparable across the 100 subjects. Results: In total, 67% of the patients had gesture performance deficits3. Most frequently, they made spatial, temporal and body-part-as-object errors. Gesture performance relied on frontal lobe function2. Poor gesture performance was associated with increased disorganization scores. In the second study, we found disorganization to be predicted only by more irregular movement patterns irrespective of the overall amount of movement4. Conclusion : Both studies provide evidence for a link between aberrant timing of motor behavior and disorganization. Disturbed movement control seems critical for disorganized behavior in schizophrenia.
Resumo:
A series of ice cores from sites with different snow-accumulation rates across Law Dome, East Antarctica, was investigated for methanesulphonic acid (MSA) movement. The precipitation at these sites (up to 35 km apart) is influenced by the same air masses, the principal difference being the accumulation rate. At the low-accumulation-rate W20k site (0.17 in ice equivalent), MSA was completely relocated from the summer to winter layer. Moderate movement was observed at the intermediate-accumulation-rate site (0.7 in ice equivalent), Dome Summit South (DSS), while there was no evidence of movement at the high-accumulation-rate DE08 site (1.4 in ice equivalent). The main DSS record of MSA covered the epoch AD 1727-2000 and was used to investigate temporal post-depositional changes. Co-deposition of MSA and sea-salt ions was observed of the surface layers, outside of the main summer MSA peak, which complicates interpretation of these peaks as evidence of movement in deeper layers. A seasonal study of the 273 year DSS record revealed MSA migration predominantly from summer into autumn (in the up-core direction), but this migration was suppressed during the Tambora (1815) and unknown (1809) volcanic eruption period, and enhanced during an epoch (1770-1800) with high summer nitrate levels. A complex interaction between the gradients in nss-sulphate, nitrate and sea salts (which are influenced by accumulation rate) is believed to control the rate and extent of movement of MSA.
Resumo:
Ependymal cell cilia help move cerebrospinal fluid through the cerebral ventricles, but the regulation of their beat frequency remains unclear. Using in vitro, high-speed video microscopy and in vivo magnetic resonance imaging in mice, we found that the metabolic peptide melanin-concentrating hormone (MCH) positively controlled cilia beat frequency, specifically in the ventral third ventricle, whereas a lack of MCH receptor provoked a ventricular size increase.
Resumo:
Rapid-eye movement (REM) sleep correlates with neuronal activity in the brainstem, basal forebrain and lateral hypothalamus. Lateral hypothalamus melanin-concentrating hormone (MCH)-expressing neurons are active during sleep, but their effects on REM sleep remain unclear. Using optogenetic tools in newly generated Tg(Pmch-cre) mice, we found that acute activation of MCH neurons (ChETA, SSFO) at the onset of REM sleep extended the duration of REM, but not non-REM, sleep episodes. In contrast, their acute silencing (eNpHR3.0, archaerhodopsin) reduced the frequency and amplitude of hippocampal theta rhythm without affecting REM sleep duration. In vitro activation of MCH neuron terminals induced GABAA-mediated inhibitory postsynaptic currents in wake-promoting histaminergic neurons of the tuberomammillary nucleus (TMN), and in vivo activation of MCH neuron terminals in TMN or medial septum also prolonged REM sleep episodes. Collectively, these results suggest that activation of MCH neurons maintains REM sleep, possibly through inhibition of arousal circuits in the mammalian brain.