797 resultados para Agent-Based Model
Resumo:
Urban surveillance footage can be of poor quality, partly due to the low quality of the camera and partly due to harsh lighting and heavily reflective scenes. For some computer surveillance tasks very simple change detection is adequate, but sometimes a more detailed change detection mask is desirable, eg, for accurately tracking identity when faced with multiple interacting individuals and in pose-based behaviour recognition. We present a novel technique for enhancing a low-quality change detection into a better segmentation using an image combing estimator in an MRF based model.
Resumo:
Space applications demand the need for building reliable systems. Autonomic computing defines such reliable systems as self-managing systems. The work reported in this paper combines agent based and swarm robotic approaches leading to swarm-array computing, a novel technique to achieve autonomy for distributed parallel computing systems. Two swarm-array computing approaches based on swarms of computational resources and swarms of tasks are explored. FPGA is considered as the computing system. The feasibility of the two proposed approaches that binds the computing system and the task together is simulated on the SeSAm multi-agent simulator.
Modelling sediment supply and transport in the River Lugg: strategies for controlling sediment loads
Resumo:
The River Lugg has particular problems with high sediment loads that have resulted in detrimental impacts on ecology and fisheries. A new dynamic, process-based model of hydrology and sediments (INCA- SED) has been developed and applied to the River Lugg system using an extensive data set from 1995–2008. The model simulates sediment sources and sinks throughout the catchment and gives a good representation of the sediment response at 22 reaches along the River Lugg. A key question considered in using the model is the management of sediment sources so that concentrations and bed loads can be reduced in the river system. Altogether, five sediment management scenarios were selected for testing on the River Lugg, including land use change, contour tillage, hedging and buffer strips. Running the model with parameters altered to simulate these five scenarios produced some interesting results. All scenarios achieved some reduction in sediment levels, with the 40% land use change achieving the best result with a 19% reduction. The other scenarios also achieved significant reductions of between 7% and 9%. Buffer strips produce the best result at close to 9%. The results suggest that if hedge introduction, contour tillage and buffer strips were all applied, sediment reductions would total 24%, considerably improving the current sediment situation. We present a novel cost-effectiveness analysis of our results where we use percentage of land removed from production as our cost function. Given the minimal loss of land associated with contour tillage, hedges and buffer strips, we suggest that these management practices are the most cost-effective combination to reduce sediment loads.
Resumo:
Brand competition is modelled using an agent based approach in order to examine the long run dynamics of market structure and brand characteristics. A repeated game is designed where myopic firms choose strategies based on beliefs about their rivals and consumers. Consumers are heterogeneous and can observe neighbour behaviour through social networks. Although firms do not observe them, the social networks have a significant impact on the emerging market structure. Presence of networks tends to polarize market share and leads to higher volatility in brands. Yet convergence in brand characteristics usually happens whenever the market reaches a steady state. Scale-free networks accentuate the polarization and volatility more than small world or random networks. Unilateral innovations are less frequent under social networks.
Resumo:
The work reported in this paper is motivated towards handling single node failures for parallel summation algorithms in computer clusters. An agent based approach is proposed in which a task to be executed is decomposed to sub-tasks and mapped onto agents that traverse computing nodes. The agents intercommunicate across computing nodes to share information during the event of a predicted node failure. Two single node failure scenarios are considered. The Message Passing Interface is employed for implementing the proposed approach. Quantitative results obtained from experiments reveal that the agent based approach can handle failures more efficiently than traditional failure handling approaches.
Resumo:
Valuation is often said to be “an art not a science” but this relates to the techniques employed to calculate value not to the underlying concept itself. Valuation is the process of estimating price in the market place. Yet, such an estimation will be affected by uncertainties. Uncertainty in the comparable information available; uncertainty in the current and future market conditions and uncertainty in the specific inputs for the subject property. These input uncertainties will translate into an uncertainty with the output figure, the valuation. The degree of the uncertainties will vary according to the level of market activity; the more active a market, the more credence will be given to the input information. In the UK at the moment the Royal Institution of Chartered Surveyors (RICS) is considering ways in which the uncertainty of the output figure, the valuation, can be conveyed to the use of the valuation, but as yet no definitive view has been taken apart from a single Guidance Note (GN5, RICS 2003) stressing the importance of recognising uncertainty in valuation but not proffering any particular solution. One of the major problems is that Valuation models (in the UK) are based upon comparable information and rely upon single inputs. They are not probability based, yet uncertainty is probability driven. In this paper, we discuss the issues underlying uncertainty in valuations and suggest a probability-based model (using Crystal Ball) to address the shortcomings of the current model.
Resumo:
The National Grid Company plc. owns and operates the electricity transmission network in England and Wales, the day to day running of the network being carried out by teams of engineers within the national control room. The task of monitoring and operating the transmission network involves the transfer of large amounts of data and a high degree of cooperation between these engineers. The purpose of the research detailed in this paper is to investigate the use of interfacing techniques within the control room scenario, in particular, the development of an agent based architecture for the support of cooperative tasks. The proposed architecture revolves around the use of interface and user supervisor agents. Primarily, these agents are responsible for the flow of information to and from individual users and user groups. The agents are also responsible for tackling the synchronisation and control issues arising during the completion of cooperative tasks. In this paper a novel approach to human computer interaction (HCI) for power systems incorporating an embedded agent infrastructure is presented. The agent architectures used to form the base of the cooperative task support system are discussed, as is the nature of the support system and tasks it is intended to support.
Resumo:
High rates of nutrient loading from agricultural and urban development have resulted in surface water eutrophication and groundwater contamination in regions of Ontario. In Lake Simcoe (Ontario, Canada), anthropogenic nutrient contributions have contributed to increased algal growth, low hypolimnetic oxygen concentrations, and impaired fish reproduction. An ambitious programme has been initiated to reduce phosphorus loads to the lake, aiming to achieve at least a 40% reduction in phosphorus loads by 2045. Achievement of this target necessitates effective remediation strategies, which will rely upon an improved understanding of controls on nutrient export from tributaries of Lake Simcoe as well as improved understanding of the importance of phosphorus cycling within the lake. In this paper, we describe a new model structure for the integrated dynamic and process-based model INCA-P, which allows fully-distributed applications, suited to branched river networks. We demonstrate application of this model to the Black River, a tributary of Lake Simcoe, and use INCA-P to simulate the fluxes of P entering the lake system, apportion phosphorus among different sources in the catchment, and explore future scenarios of land-use change and nutrient management to identify high priority sites for implementation of watershed best management practises.
Resumo:
Valuation is often said to be “an art not a science” but this relates to the techniques employed to calculate value not to the underlying concept itself. Valuation is the process of estimating price in the market place. Yet, such an estimation will be affected by uncertainties. Uncertainty in the comparable information available; uncertainty in the current and future market conditions and uncertainty in the specific inputs for the subject property. These input uncertainties will translate into an uncertainty with the output figure, the valuation. The degree of the uncertainties will vary according to the level of market activity; the more active a market, the more credence will be given to the input information. In the UK at the moment the Royal Institution of Chartered Surveyors (RICS) is considering ways in which the uncertainty of the output figure, the valuation, can be conveyed to the use of the valuation, but as yet no definitive view has been taken. One of the major problems is that Valuation models (in the UK) are based upon comparable information and rely upon single inputs. They are not probability based, yet uncertainty is probability driven. In this paper, we discuss the issues underlying uncertainty in valuations and suggest a probability-based model (using Crystal Ball) to address the shortcomings of the current model.
Resumo:
Steady state and dynamic models have been developed and applied to the River Kennet system. Annual nitrogen exports from the land surface to the river have been estimated based on land use from the 1930s and the 1990s. Long term modelled trends indicate that there has been a large increase in nitrogen transport into the river system driven by increased fertiliser application associated with increased cereal production, increased population and increased livestock levels. The dynamic model INCA Integrated Nitrogen in Catchments. has been applied to simulate the day-to-day transport of N from the terrestrial ecosystem to the riverine environment. This process-based model generates spatial and temporal data and reproduces the observed instream concentrations. Applying the model to current land use and 1930s land use indicates that there has been a major shift in the short term dynamics since the 1930s, with increased river and groundwater concentrations caused by both non-point source pollution from agriculture and point source discharges. �
Resumo:
The use of Bayesian inference in the inference of time-frequency representations has, thus far, been limited to offline analysis of signals, using a smoothing spline based model of the time-frequency plane. In this paper we introduce a new framework that allows the routine use of Bayesian inference for online estimation of the time-varying spectral density of a locally stationary Gaussian process. The core of our approach is the use of a likelihood inspired by a local Whittle approximation. This choice, along with the use of a recursive algorithm for non-parametric estimation of the local spectral density, permits the use of a particle filter for estimating the time-varying spectral density online. We provide demonstrations of the algorithm through tracking chirps and the analysis of musical data.
Resumo:
Vintage-based vector autoregressive models of a single macroeconomic variable are shown to be a useful vehicle for obtaining forecasts of different maturities of future and past observations, including estimates of post-revision values. The forecasting performance of models which include information on annual revisions is superior to that of models which only include the first two data releases. However, the empirical results indicate that a model which reflects the seasonal nature of data releases more closely does not offer much improvement over an unrestricted vintage-based model which includes three rounds of annual revisions.
Resumo:
Increasing cereal yield is needed to meet the projected increased demand for world food supply of about 70% by 2050. Sirius, a process-based model for wheat, was used to estimate yield potential for wheat ideotypes optimized for future climatic projections (HadCM3 global climate model) for ten wheat growing areas of Europe. It was predicted that the detrimental effect of drought stress on yield would be decreased due to enhanced tailoring of phenology to future weather patterns, and due to genetic improvements in the response of photosynthesis and green leaf duration to water shortage. Yield advances could be made through extending maturation and thereby improve resource capture and partitioning. However the model predicted an increase in frequency of heat stress at meiosis and anthesis. Controlled environment experiments quantify the effects of heat and drought at booting and flowering on grain numbers and potential grain size. A current adaptation of wheat to areas of Europe with hotter and drier summers is a quicker maturation which helps to escape from excessive stress, but results in lower yields. To increase yield potential and to respond to climate change, increased tolerance to heat and drought stress should remain priorities for the genetic improvement of wheat.
Resumo:
Model quality assessment programs (MQAPs) aim to assess the quality of modelled 3D protein structures. The provision of quality scores, describing both global and local (per-residue) accuracy are extremely important, as without quality scores we are unable to determine the usefulness of a 3D model for further computational and experimental wet lab studies.Here, we briefly discuss protein tertiary structure prediction, along with the biennial Critical Assessment of Techniques for Protein Structure Prediction (CASP) competition and their key role in driving the field of protein model quality assessment methods (MQAPs). We also briefly discuss the top MQAPs from the previous CASP competitions. Additionally, we describe our downloadable and webserver-based model quality assessment methods: ModFOLD3, ModFOLDclust, ModFOLDclustQ, ModFOLDclust2, and IntFOLD-QA. We provide a practical step-by-step guide on using our downloadable and webserver-based tools and include examples of their application for improving tertiary structure prediction, ligand binding site residue prediction, and oligomer predictions.
Resumo:
Ships and wind turbines generate noise, which can have a negative impact on marine mammal populations by scaring animals away. Effective modelling of how this affects the populations has to take account of the location and timing of disturbances. Here we construct an individual-based model of harbour porpoises in the Inner Danish Waters. Individuals have their own energy budgets constructed using established principles of physiological ecology. Data are lacking on the spatial distribution of food which is instead inferred from knowledge of time-varying porpoise distributions. The model produces plausible patterns of population dynamics and matches well the age distribution of porpoises caught in by-catch. It estimates the effect of existing wind farms as a 10% reduction in population size when food recovers fast (after two days). Proposed new wind farms and ships do not result in further population declines. The population is however sensitive to variations in mortality resulting from by-catch and to the speed at which food recovers after being depleted. If food recovers slowly the effect of wind turbines becomes negligible, whereas ships are estimated to have a significant negative impact on the population. Annual by-catch rates ≥10% lead to monotonously decreasing populations and to extinction, and even the estimated by-catch rate from the adjacent area (approximately 4.1%) has a strong impact on the population. This suggests that conservation efforts should be more focused on reducing by-catch in commercial gillnet fisheries than on limiting the amount of anthropogenic noise. Individual-based models are unique in their ability to take account of the location and timing of disturbances and to show their likely effects on populations. The models also identify deficiencies in the existing database and can be used to set priorities for future field research.