823 resultados para Adaptive object model
Resumo:
Les métaheuristiques sont très utilisées dans le domaine de l'optimisation discrète. Elles permettent d’obtenir une solution de bonne qualité en un temps raisonnable, pour des problèmes qui sont de grande taille, complexes, et difficiles à résoudre. Souvent, les métaheuristiques ont beaucoup de paramètres que l’utilisateur doit ajuster manuellement pour un problème donné. L'objectif d'une métaheuristique adaptative est de permettre l'ajustement automatique de certains paramètres par la méthode, en se basant sur l’instance à résoudre. La métaheuristique adaptative, en utilisant les connaissances préalables dans la compréhension du problème, des notions de l'apprentissage machine et des domaines associés, crée une méthode plus générale et automatique pour résoudre des problèmes. L’optimisation globale des complexes miniers vise à établir les mouvements des matériaux dans les mines et les flux de traitement afin de maximiser la valeur économique du système. Souvent, en raison du grand nombre de variables entières dans le modèle, de la présence de contraintes complexes et de contraintes non-linéaires, il devient prohibitif de résoudre ces modèles en utilisant les optimiseurs disponibles dans l’industrie. Par conséquent, les métaheuristiques sont souvent utilisées pour l’optimisation de complexes miniers. Ce mémoire améliore un procédé de recuit simulé développé par Goodfellow & Dimitrakopoulos (2016) pour l’optimisation stochastique des complexes miniers stochastiques. La méthode développée par les auteurs nécessite beaucoup de paramètres pour fonctionner. Un de ceux-ci est de savoir comment la méthode de recuit simulé cherche dans le voisinage local de solutions. Ce mémoire implémente une méthode adaptative de recherche dans le voisinage pour améliorer la qualité d'une solution. Les résultats numériques montrent une augmentation jusqu'à 10% de la valeur de la fonction économique.
Resumo:
Mobile sensor networks have unique advantages compared with wireless sensor networks. The mobility enables mobile sensors to flexibly reconfigure themselves to meet sensing requirements. In this dissertation, an adaptive sampling method for mobile sensor networks is presented. Based on the consideration of sensing resource constraints, computing abilities, and onboard energy limitations, the adaptive sampling method follows a down sampling scheme, which could reduce the total number of measurements, and lower sampling cost. Compressive sensing is a recently developed down sampling method, using a small number of randomly distributed measurements for signal reconstruction. However, original signals cannot be reconstructed using condensed measurements, as addressed by Shannon Sampling Theory. Measurements have to be processed under a sparse domain, and convex optimization methods should be applied to reconstruct original signals. Restricted isometry property would guarantee signals can be recovered with little information loss. While compressive sensing could effectively lower sampling cost, signal reconstruction is still a great research challenge. Compressive sensing always collects random measurements, whose information amount cannot be determined in prior. If each measurement is optimized as the most informative measurement, the reconstruction performance can perform much better. Based on the above consideration, this dissertation is focusing on an adaptive sampling approach, which could find the most informative measurements in unknown environments and reconstruct original signals. With mobile sensors, measurements are collect sequentially, giving the chance to uniquely optimize each of them. When mobile sensors are about to collect a new measurement from the surrounding environments, existing information is shared among networked sensors so that each sensor would have a global view of the entire environment. Shared information is analyzed under Haar Wavelet domain, under which most nature signals appear sparse, to infer a model of the environments. The most informative measurements can be determined by optimizing model parameters. As a result, all the measurements collected by the mobile sensor network are the most informative measurements given existing information, and a perfect reconstruction would be expected. To present the adaptive sampling method, a series of research issues will be addressed, including measurement evaluation and collection, mobile network establishment, data fusion, sensor motion, signal reconstruction, etc. Two dimensional scalar field will be reconstructed using the method proposed. Both single mobile sensors and mobile sensor networks will be deployed in the environment, and reconstruction performance of both will be compared.In addition, a particular mobile sensor, a quadrotor UAV is developed, so that the adaptive sampling method can be used in three dimensional scenarios.
Resumo:
Les métaheuristiques sont très utilisées dans le domaine de l'optimisation discrète. Elles permettent d’obtenir une solution de bonne qualité en un temps raisonnable, pour des problèmes qui sont de grande taille, complexes, et difficiles à résoudre. Souvent, les métaheuristiques ont beaucoup de paramètres que l’utilisateur doit ajuster manuellement pour un problème donné. L'objectif d'une métaheuristique adaptative est de permettre l'ajustement automatique de certains paramètres par la méthode, en se basant sur l’instance à résoudre. La métaheuristique adaptative, en utilisant les connaissances préalables dans la compréhension du problème, des notions de l'apprentissage machine et des domaines associés, crée une méthode plus générale et automatique pour résoudre des problèmes. L’optimisation globale des complexes miniers vise à établir les mouvements des matériaux dans les mines et les flux de traitement afin de maximiser la valeur économique du système. Souvent, en raison du grand nombre de variables entières dans le modèle, de la présence de contraintes complexes et de contraintes non-linéaires, il devient prohibitif de résoudre ces modèles en utilisant les optimiseurs disponibles dans l’industrie. Par conséquent, les métaheuristiques sont souvent utilisées pour l’optimisation de complexes miniers. Ce mémoire améliore un procédé de recuit simulé développé par Goodfellow & Dimitrakopoulos (2016) pour l’optimisation stochastique des complexes miniers stochastiques. La méthode développée par les auteurs nécessite beaucoup de paramètres pour fonctionner. Un de ceux-ci est de savoir comment la méthode de recuit simulé cherche dans le voisinage local de solutions. Ce mémoire implémente une méthode adaptative de recherche dans le voisinage pour améliorer la qualité d'une solution. Les résultats numériques montrent une augmentation jusqu'à 10% de la valeur de la fonction économique.
Resumo:
A comprehensive user model, built by monitoring a user's current use of applications, can be an excellent starting point for building adaptive user-centred applications. The BaranC framework monitors all user interaction with a digital device (e.g. smartphone), and also collects all available context data (such as from sensors in the digital device itself, in a smart watch, or in smart appliances) in order to build a full model of user application behaviour. The model built from the collected data, called the UDI (User Digital Imprint), is further augmented by analysis services, for example, a service to produce activity profiles from smartphone sensor data. The enhanced UDI model can then be the basis for building an appropriate adaptive application that is user-centred as it is based on an individual user model. As BaranC supports continuous user monitoring, an application can be dynamically adaptive in real-time to the current context (e.g. time, location or activity). Furthermore, since BaranC is continuously augmenting the user model with more monitored data, over time the user model changes, and the adaptive application can adapt gradually over time to changing user behaviour patterns. BaranC has been implemented as a service-oriented framework where the collection of data for the UDI and all sharing of the UDI data are kept strictly under the user's control. In addition, being service-oriented allows (with the user's permission) its monitoring and analysis services to be easily used by 3rd parties in order to provide 3rd party adaptive assistant services. An example 3rd party service demonstrator, built on top of BaranC, proactively assists a user by dynamic predication, based on the current context, what apps and contacts the user is likely to need. BaranC introduces an innovative user-controlled unified service model of monitoring and use of personal digital activity data in order to provide adaptive user-centred applications. This aims to improve on the current situation where the diversity of adaptive applications results in a proliferation of applications monitoring and using personal data, resulting in a lack of clarity, a dispersal of data, and a diminution of user control.
Resumo:
Comparative and evolutionary developmental analyses seek to discover the similarities and differences between humans and non-human species that illuminate both the evolutionary foundations of our nature that we share with other animals, and the distinctive characteristics that make human development unique. As our closest animal relatives, with whom we last shared common ancestry, non-human primates have beenparticularly important in this endeavour. Such studies that have focused on social learning, traditions, and culture have discovered much about the ‘how’ of social learning, concerned with key underlying processes such as imitation and emulation. One of the core discoveries is that the adaptive adjustment of social learning options to different contexts is not unique to human infants, therefore multiple new strands of research have begun to focus on more subtle questions about when, from whom, and why such learning occurs. Here we review illustrative studies on both human infants and young children and on non-human primates to identify the similarities shared more broadly across the primate order, and the apparent specialisms that distinguish human development. Adaptive biases in social learning discussed include those modulated by task comprehension, experience, conformity to majorities, and the age, skill, proficiency and familiarity of potential alternative cultural models.
Resumo:
Near-infrared polarimetry observation is a powerful tool to study the central sources at the center of the Milky Way. My aim of this thesis is to analyze the polarized emission present in the central few light years of the Galactic Center region, in particular the non-thermal polarized emission of Sagittarius~A* (Sgr~A*), the electromagnetic manifestation of the super-massive black hole, and the polarized emission of an infrared-excess source in the literature referred to as DSO/G2. This source is in orbit about Sgr~A*. In this thesis I focus onto the Galactic Center observations at $\lambda=2.2~\mu m$ ($K_\mathrm{s}$-band) in polarimetry mode during several epochs from 2004 to 2012. The near-infrared polarized observations have been carried out using the adaptive optics instrument NAOS/CONICA and Wollaston prism at the Very Large Telescope of ESO (European Southern Observatory). Linear polarization at 2.2 $\mu m$, its flux statistics and time variation, can be used to constrain the physical conditions of the accretion process onto the central super-massive black hole. I present a statistical analysis of polarized $K_\mathrm{s}$-band emission from Sgr~A* and investigate the most comprehensive sample of near-infrared polarimetric light curves of this source up to now. I find several polarized flux excursions during the years and obtain an exponent of about 4 for the power-law fitted to polarized flux density distribution of fluxes above 5~mJy. Therefore, this distribution is closely linked to the single state power-law distribution of the total $K_\mathrm{s}$-band flux densities reported earlier by us. I find polarization degrees of the order of 20\%$\pm$10\% and a preferred polarization angle of $13^o\pm15^o$. Based on simulations of polarimetric measurements given the observed flux density and its uncertainty in orthogonal polarimetry channels, I find that the uncertainties of polarization parameters under a total flux density of $\sim 2\,{\mathrm{mJy}}$ are probably dominated by observational uncertainties. At higher flux densities there are intrinsic variations of polarization degree and angle within rather well constrained ranges. Since the emission is most likely due to optically thin synchrotron radiation, the obtained preferred polarization angle is very likely reflecting the intrinsic orientation of the Sgr~A* system i.e. an accretion disk or jet/wind scenario coupled to the super-massive black hole. Our polarization statistics show that Sgr~A* must be a stable system, both in terms of geometry, and the accretion process. I also investigate an infrared-excess source called G2 or Dusty S-cluster Object (DSO) moving on a highly eccentric orbit around the Galaxy's central black hole, Sgr~A*. I use for the first time the near-infrared polarimetric imaging data to determine the nature and the properties of DSO and obtain an improved $K_\mathrm{s}$-band identification of this source in median polarimetry images of different observing years. The source starts to deviate from the stellar confusion in 2008 data and it does not show a flux density variability based on our data set. Furthermore, I measure the polarization degree and angle of this source and conclude based on the simulations on polarization parameters that it is an intrinsically polarized source with a varying polarization angle as it approaches Sgr~A* position. I use the interpretation of the DSO polarimetry measurements to assess its possible properties.
Resumo:
On most if not all evaluatively relevant dimensions such as the temperature level, taste intensity, and nutritional value of a meal, one range of adequate, positive states is framed by two ranges of inadequate, negative states, namely too much and too little. This distribution of positive and negative states in the information ecology results in a higher similarity of positive objects, people, and events to other positive stimuli as compared to the similarity of negative stimuli to other negative stimuli. In other words, there are fewer ways in which an object, a person, or an event can be positive as compared to negative. Oftentimes, there is only one way in which a stimulus can be positive (e.g., a good meal has to have an adequate temperature level, taste intensity, and nutritional value). In contrast, there are many different ways in which a stimulus can be negative (e.g., a bad meal can be too hot or too cold, too spicy or too bland, or too fat or too lean). This higher similarity of positive as compared to negative stimuli is important, as similarity greatly impacts speed and accuracy on virtually all levels of information processing, including attention, classification, categorization, judgment and decision making, and recognition and recall memory. Thus, if the difference in similarity between positive and negative stimuli is a general phenomenon, it predicts and may explain a variety of valence asymmetries in cognitive processing (e.g., positive as compared to negative stimuli are processed faster but less accurately). In my dissertation, I show that the similarity asymmetry is indeed a general phenomenon that is observed in thousands of words and pictures. Further, I show that the similarity asymmetry applies to social groups. Groups stereotyped as average on the two dimensions agency / socio-economic success (A) and conservative-progressive beliefs (B) are stereotyped as positive or high on communion (C), while groups stereotyped as extreme on A and B (e.g., managers, homeless people, punks, and religious people) are stereotyped as negative or low on C. As average groups are more similar to one another than extreme groups, according to this ABC model of group stereotypes, positive groups are mentally represented as more similar to one another than negative groups. Finally, I discuss implications of the ABC model of group stereotypes, pointing to avenues for future research on how stereotype content shapes social perception, cognition, and behavior.
Resumo:
Fleck and Johnson (Int. J. Mech. Sci. 29 (1987) 507) and Fleck et al. (Proc. Inst. Mech. Eng. 206 (1992) 119) have developed foil rolling models which allow for large deformations in the roll profile, including the possibility that the rolls flatten completely. However, these models require computationally expensive iterative solution techniques. A new approach to the approximate solution of the Fleck et al. (1992) Influence Function Model has been developed using both analytic and approximation techniques. The numerical difficulties arising from solving an integral equation in the flattened region have been reduced by applying an Inverse Hilbert Transform to get an analytic expression for the pressure. The method described in this paper is applicable to cases where there is or there is not a flat region.
Rainfall, Mosquito Density and the Transmission of Ross River Virus: A Time-Series Forecasting Model