999 resultados para Accumulation rate, dust


Relevância:

90.00% 90.00%

Publicador:

Resumo:

At mid- to high-latitude marine sites, ice-rafted debris (IRD) is commonly recognized as anomalously coarse-grained terrigenous material contained within a fine-grained hemipelagic or pelagic matrix (e.g., Conolly and Ewing, 1970; Ruddiman, 1977, doi:10.1130/0016-7606(1977)88<1813:LQDOIS>2.0.CO;2; Krissek, 1989, doi:10.2973/odp.proc.sr.104.114.1989; Jansen et al., 1990; Bond et al., doi:10.1038/360245a0, 1992; Krissek, 1995, doi:10.2973/odp.proc.sr.145.118.1995). The presence of such ice-rafted material is a valuable indicator of the presence of glacial ice at sea level on an adjacent continent, whereas the composition of the IRD can often be used to identify the location of the source area (e.g., Goldschmidt, 1995, doi:10.1016/0025-3227(95)00098-J). Because the amount of core recovered during Leg 163 was very limited, this shore-based, postcruise study focuses on materials recovered at a nearby site during Leg 152. In particular, this study examines sediments recovered at Site 919; these sediments were described as containing a significant ice-rafted component in the Leg 152 Initial Reports volume (Larsen, Saunders, Clift, et al., 1994, doi:10.2973/odp.proc.ir.152.1994). In this study, the sedimentary section from Site 919 has been examined with the goal of providing a detailed history of glaciations on Greenland and other landmasses adjacent to the Norwegian-Greenland Sea; this history ultimately will be calibrated using an oxygen isotope stratigraphy (Flower, 1998, doi:10.2973/odp.proc.sr.152.219.1998), although that calibration has not been completed at this time. Because ice-core studies of the Greenland Ice Sheet (GIS) have shown that the GIS changed dramatically, and in some cases extremely rapidly, during at least the last interglacial stage (GRIP Members, 1993, doi:10.1038/364203a0), a detailed IRD record from the Southeast Greenland margin should provide insight into the longer term behavior of this sensitive component of the Northern Hemisphere climate system.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A reconstruction of Holocene sea ice conditions in the Fram Strait provides insight into the palaeoenvironmental and palaeoceanographic development of this climate sensitive area during the past 8,500 years BP. Organic geochemical analyses of sediment cores from eastern and western Fram Strait enable the identification of variations in the ice coverage that can be linked to changes in the oceanic (and atmospheric) circulation system. By means of the sea ice proxy IP25, phytoplankton derived biomarkers and ice rafted detritus (IRD) increasing sea ice occurrences are traced along the western continental margin of Spitsbergen throughout the Holocene, which supports previous palaeoenvironmental reconstructions that document a general cooling. A further significant ice advance during the Neoglacial is accompanied by distinct sea ice fluctuations, which point to short-term perturbations in either the Atlantic Water advection or Arctic Water outflow at this site. At the continental shelf of East Greenland, the general Holocene cooling, however, seems to be less pronounced and sea ice conditions remained rather stable. Here, a major Neoglacial increase in sea ice coverage did not occur before 1,000 years BP. Phytoplankton-IP25 indices ("PIP25-Index") are used for more explicit sea ice estimates and display a Mid Holocene shift from a minor sea ice coverage to stable ice margin conditions in eastern Fram Strait, while the inner East Greenland shelf experienced less severe to marginal sea ice occurrences throughout the entire Holocene.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Deep-sea sediment samples from three Ocean Drilling Program (ODP) Leg 112 sites on the Peru continental margin were investigated, using a number of organic geochemical and organic petrographic techniques, for amounts and compositions of the organic matter preserved. Preliminary results include mass accumulation rates of organic carbon at Site 679 and characteristics of the organic facies for sediments from Sites 679, 681, and 684. Organic-carbon contents are high, with few exceptions. Particularly high values were determined in the Pliocene interval at Site 684 (4%-7.5%) and in the early Pliocene to Quaternary section of Hole 679D (2%-9%). Older sediments at this site have distinctively lower organic-carbon contents (0.2%-2.5%). Mass accumulation rates of organic matter at Site 679 are 0.02 to 0.07 g carbon/cm**2/k.y. for late Miocene to early Pliocene sediments and higher by a factor of 5 to 10 in the Quaternary sediments. The organic matter in all samples has a predominantly marine planktonic and bacterial origin, with minor terrigenous contribution. Organic particle sizes are strikingly small, so that only a minor portion is covered by visual maceral analysis. Molecular organic-geochemical data were obtained for nonaromatic hydrocarbons, aromatic hydrocarbons (including sulfur compounds), alcohols, ketones, esters, and carboxylic acids. Among the total extractable lipids, long-chain unsaturated ketones from Prymnesiophyte algae strongly predominate among the gas chromatography (GC) amenable components. Steroids are major constituents of the ketone and free- and bound-alcohol fractions. Perylene is the most abundant aromatic hydrocarbon, whereas in the nonaromatic hydrocarbon fractions, long-chain n-alkanes from higher land plants predominate, although the total terrigenous organic matter proportion in the sediments is small.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Global databases of calcium carbonate concentrations and mass accumulation rates in Holocene and last glacial maximum sediments were used to estimate the deep-sea sedimentary calcium carbonate burial rate during these two time intervals. Sparse calcite mass accumulation rate data were extrapolated across regions of varying calcium carbonate concentration using a gridded map of calcium carbonate concentrations and the assumption that accumulation of noncarbonate material is uncorrelated with calcite concentration within some geographical region. Mean noncarbonate accumulation rates were estimated within each of nine regions, determined by the distribution and nature of the accumulation rate data. For core-top sediments the regions of reasonable data coverage encompass 67% of the high-calcite (>75%) sediments globally, and within these regions we estimate an accumulation rate of 55.9 ± 3.6 x 10**11 mol/yr. The same regions cover 48% of glacial high-CaCO3 sediments (the smaller fraction is due to a shift of calcite deposition to the poorly sampled South Pacific) and total 44.1 ± 6.0 x 10**11 mol/yr. Projecting both estimates to 100 % coverage yields accumulation estimates of 8.3 x 10**12 mol/yr today and 9.2 x 10**12 mol/yr during glacial time. This is little better than a guess given the incomplete data coverage, but it suggests that glacial deep sea calcite burial rate was probably not considerably faster than today in spite of a presumed decrease in shallow water burial during glacial time.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Since Dymond et al. (1992, doi:10.1029/92PA00181) proposed the paleoproductivity algorithm based on "Bio-Ba", which relies on a strong correlation between Ba and organic carbon fluxes in sediment traps, this proxy has been applied in many paleoproductivity studies. Barite, the main carrier of particulate barium in the water column and the phase associated with carbon export, has also been suggested as a reliable paleoproductivity proxy in some locations. We demonstrate that Ba(excess) (total barium minus the fraction associated with terrigenous material) frequently overestimates Ba(barite) (barium associated with the mineral barite), most likely due to the inclusion of barium from phases other than barite and terrigenous silicates (e.g., carbonate, organic matter, opal, Fe-Mn oxides, and hydroxides). A comparison between overlying oceanic carbon export and carbon export derived from Ba(excess) shows that the Dymond et al. (1992) algorithm frequently underestimates carbon export but is still a useful carbon export indicator if all caveats are considered before the algorithm is applied. Ba(barite) accumulation rates from a wide range of core top sediments from different oceanic settings are highly correlated to surface ocean 14C and Chlorophyll a measurements of primary production. This relationship varies by ocean basin, but with the application of the appropriate f ratio to 14C and Chlorophyll a primary production estimates, the plot of Ba(barite) accumulation and carbon export for the equatorial Pacific, Atlantic, and Southern Ocean converges to a global relationship that can be used to reconstruct paleo carbon export.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

There is increasing evidence indicating that syndepositional redistribution of sediment on the seafloor by bottom currents is common and can significantly affect sediment mass accumulation rates. Notwithstanding its common incidence, this process (generally referred to as sediment focusing) is often difficult to recognize. If redistribution is near synchronous to deposition, the stratigraphy of the sediment is not disturbed and sediment focusing can easily be overlooked. Ignoring it, however, can lead to serious misinterpretations of sedimentary fluxes, particularly when past changes in export flux from the overlying water are inferred. In many instances, this problem can be resolved, at least for sediments deposited during the late Quaternary, by normalizing to the flux of 230Th scavenged from seawater, which is nearly constant and equivalent to the known rate of production of 230Th from the decay of dissolved 234U. We review the principle, advantages and limitations of this method. Notwithstanding its limitations, it is clear that 230Th normalization does provide a means of achieving more accurate interpretations of sedimentary fluxes and eliminates the risk of serious misinterpretations of sediment mass accumulation rates.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Four firn cores were retrieved in 2007 at two ridges in the area of the Ekström Ice Shelf, Dronning Maud Land, coastal East Antarctica, in order to investigate the recent regional climate variability and the potential for future extraction of an intermediate-depth core. Stable water-isotope analysis, tritium content and electrical conductivity were used to date the cores. For the period 1981-2006 a strong and significant correlation between the stable-isotope composition of firn cores in the hinterland and mean monthly air temperatures at Neumayer station was (r=0.54-0.71). No atmospheric warming or cooling trend is inferred from our stable-isotope data for the period 1962-2006. The stable-isotope record of the ice/firn cores could expand well beyond the meteorological record of the region. No significant temporal variation of accumulation rates was detected. However, decreasing accumulation rates were found from coast to hinterland, as well as from east (Halvfarryggen) to west (Søråsen). The deuterium excess (d) exhibits similar differences (higher d at Søråsen, lower d at Halvfarryggen), with a weak negative temporal trend on Halvfarryggen (0.04 per mil/a), probably implying increasing oceanic input. We conclude that Halvfarryggen acts as a natural barrier for moisture-carrying air masses circulating in the region from east to west.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A compilation of 1118 surface sediment samples from the South Atlantic was used to map modern seafloor distribution of organic carbon content in this ocean basin. Using new data on Holocene sedimentation rates, we estimated the annual organic carbon accumulation in the pelagic realm (>3000 m water depth) to be approximately 1.8*10**12 g C/year. In the sediments underlying the divergence zone in the Eastern Equatorial Atlantic (EEA), only small amounts of organic carbon accumulate in spite of the high surface water productivity observed in that area. This implies that in the Eastern Equatorial Atlantic, organic carbon accumulation is strongly reduced by efficient degradation of organic matter prior to its burial. During the Last Glacial Maximum (LGM), accumulation of organic carbon was higher than during the mid-Holocene along the continental margins of Africa and South America (Brazil) as well as in the equatorial region. In the Eastern Equatorial Atlantic in particular, large relative differences between LGM and mid-Holocene accumulation rates are found. This is probably to a great extent due to better preservation of organic matter related to changes in bottom water circulation and not just a result of strongly enhanced export productivity during the glacial period. On average, a two- to three-fold increase in organic carbon accumulation during the LGM compared to mid-Holocene conditions can be deduced from our cores. However, for the deep-sea sediments this cannot be solely attributed to a glacial productivity increase, as changes in South Atlantic deep-water circulation seem to result in better organic carbon preservation during the LGM.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

No clear scenario has yet been able to explain the full carbon drawdown that occurred during the Last Glacial Maximum (LGM); however, increased export production (EP) in the Subantarctic Zone (SAZ) of the Southern Ocean due to iron (Fe) fertilisation has been proposed to have provided a key mechanism affecting the air-sea partitioning of carbon. We chronicle changes in marine EP based on four sediment cores in Subtropical Waters (STW) and SAZ around New Zealand since the LGM. For the first time in this region, we present 230-Thorium normalised fluxes of biogenic opal, carbonate (CaCO3), excess Barium (xsBa), and organic Carbon (Corg). In STW and SAZ, these flux variations show that EP did not change markedly since the LGM. The only exception was a site in the SAZ close to the STF, where we suggest the STF shifted over the core site, driving increased EP. To understand why EP was mostly low and constant we investigated dust deposition changes by measuring lithogenic fluxes at the four sites. These data are coherent with an increased dust deposition in the southwest Pacific during the LGM. Additionally, we infer an increased lithogenic material discharge from erosion and glacier melts during the deglaciation, limited to the Campbell Plateau. Therefore, we propose that even though increased glacial dust deposition may have relieved Fe limitation within the SAZ, the availability of silicic acid (Si(OH)4) limited any resultant increase in carbon export during the LGM. Consequently, we infer low Si(OH)4 concentrations in the SAZ that have not significantly changed since the LGM. This result suggests that both Si(OH)4 and Fe co-limit EP in the SAZ around New Zealand, which would be consistent with modern process studies.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Barite accumulation rates (BAR) have been measured from 12 DSDP/ODP site globally (DSDP site 525, 549 and ODP site 690, 738, 1051, 1209, 1215, 1220, 1221, 1263,1265 and 1266A) to reconstruct the export production across Paleocene Eocene Thermal Maximum (PETM) around 55.9 million year ago. Our results suggesting a general increase in export productivity. We propose that changes in marine ecosystems, resulting from high atmospheric partial pressure of CO2 and ocean acidification, led to enhanced carbon export from the photic zone to depth, thereby increasing the efficiency of the biological pump. We estimate that an annual carbon export flux out of the euphotic zone and into the deep ocean waters could have amounted to about 15 Gt during the PETM. About 0.4% of this carbon is expected to have entered the refractory dissolved organic pool, where it could be sequestered from the atmosphere for tens of thousands of years. Our estimates are consistent with the amount of carbon redistribution expected for the recovery from the PETM.