949 resultados para Accelerated Solvent Extraction (ASE-200)
Resumo:
The location of a flame front is often taken as the point of maximum OH gradient. Planar laser-induced fluorescence of OH can be used to obtain the flame front by extracting the points of maximum gradient. This operation is typically performed using an edge detection algorithm. The choice of operating parameters a priori poses significant problems of robustness when handling images with a range of signal-to-noise ratios. A statistical method of parameter selection originating in the image processing literature is detailed, and its merit for this application is demonstrated. A reduced search space method is proposed to decrease computational cost and render the technique viable for large data sets. This gives nearly identical output to the full method. These methods demonstrate substantial decreases in data rejection compared to the use of a priori parameters. These methods are viable for any application where maximum gradient contours must be accurately extracted from images of species or temperature, even at very low signal-to-noise ratios.
Resumo:
本文用三种方法分离纯化沙冬青(Ammopiptanthus mongolicus)叶片抗冻蛋白质。从70%硫酸铵沉淀后的上清液中得到了一种碱性的小分子物质,UiS,具有较高的溶解度( 260 mg/ml)和较强的降低溶液冰点的能力(200 mg/ml,冰点小于-20℃):从10%硫酸铵和26%氯化铵共沉淀物中分离到一种抗冻蛋白-B3,B3分子量为39.8 kDa,热滞活性为0.45℃(10 mg/ml):从沙冬青叶片热稳定蛋白质中用双向电泳一电泳回收法分离到afp,其分子量为40 kDa,pl为9.0。热滞活性为0.9℃(20 mg/ml),和其他抗冻蛋白质进行比较,没有发现相同的类型。afp和uis在叶片含量都很高,可能是沙冬青抗冻生理过程中两种主要物质,它们对于沙冬青抵御-20℃左右的冷冻温度具有重要的意义。afp N端序列为SDDL SFTF NKFV PCQT DILF,据此合成了六段5’引物和一段3’引物,用RT - PCR方法从叶片中扩增出一段200 bp左右的片段。
Resumo:
Horseshoe crabs (Limulus polyphemus) are caught by commercial fishermen for use as bait in eel and whelk fisheries (Berkson and Shuster, 1999)—fisheries with an annual economic value of $13 to $17 million (Manion et al.1). Horse-shoe crabs are ecologically important, as well (Walls et al., 2002). Migratory shorebirds rely on horseshoe crab eggs for food as they journey from South American wintering grounds to Arctic breeding grounds (Clark, 1996). Horse-shoe crabs are also essential for public health (Berkson and Shuster, 1999). Biomedical companies bleed horse-shoe crabs to extract a chemical used to detect the presence of endotoxins pathogenic to humans in injectable and implantable medical devices (Novitsky, 1984; Mikkelsen, 1988). Bled horseshoe crabs are returned to the wild, subject to the possibility of postbleeding mortality. Recent concerns of overharvesting have led to conflicts among commercial fishermen, environmentalists acting on behalf of the shorebirds, and biomedical companies (Berkson and Shuster, 1999; Walls et al., 2002).