920 resultados para ADAPTED ANALYTICAL MODEL


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work presents a periodic state space model to model monthly temperature data. Additionally, some issues are discussed, as the parameter estimation or the Kalman filter recursions adapted to a periodic model. This framework is applied to monthly long-term temperature time series of Lisbon.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

As the formative agents of cloud droplets, aerosols play an undeniably important role in the development of clouds and precipitation. Few meteorological models have been developed or adapted to simulate aerosols and their contribution to cloud and precipitation processes. The Weather Research and Forecasting model (WRF) has recently been coupled with an atmospheric chemistry suite and is jointly referred to as WRF-Chem, allowing atmospheric chemistry and meteorology to influence each other’s evolution within a mesoscale modeling framework. Provided that the model physics are robust, this framework allows the feedbacks between aerosol chemistry, cloud physics, and dynamics to be investigated. This study focuses on the effects of aerosols on meteorology, specifically, the interaction of aerosol chemical species with microphysical processes represented within the framework of the WRF-Chem. Aerosols are represented by eight size bins using the Model for Simulating Aerosol Interactions and Chemistry (MOSAIC) sectional parameterization, which is linked to the Purdue Lin bulk microphysics scheme. The aim of this study is to examine the sensitivity of deep convective precipitation modeled by the 2D WRF-Chem to varying aerosol number concentration and aerosol type. A systematic study has been performed regarding the effects of aerosols on parameters such as total precipitation, updraft/downdraft speed, distribution of hydrometeor species, and organizational features, within idealized maritime and continental thermodynamic environments. Initial results were obtained using WRFv3.0.1, and a second series of tests were run using WRFv3.2 after several changes to the activation, autoconversion, and Lin et al. microphysics schemes added by the WRF community, as well as the implementation of prescribed vertical levels by the author. The results of WRFv3.2 runs contrasted starkly with WRFv3.0.1 runs. The WRFv3.0.1 runs produced a propagating system resembling a developing squall line, whereas the WRFv3.2 runs did not. The response of total precipitation, updraft/downdraft speeds, and system organization to increasing aerosol concentrations were opposite between runs with different versions of WRF. Results of the WRFv3.2 runs, however, were in better agreement in timing and magnitude of vertical velocity and hydrometeor content with a WRFv3.0.1 run using single-moment Lin et al. microphysics, than WRFv3.0.1 runs with chemistry. One result consistent throughout all simulations was an inhibition in warm-rain processes due to enhanced aerosol concentrations, which resulted in a delay of precipitation onset that ranged from 2-3 minutes in WRFv3.2 runs, and up to 15 minutes in WRFv.3.0.1 runs. This result was not observed in a previous study by Ntelekos et al. (2009) using the WRF-Chem, perhaps due to their use of coarser horizontal and vertical resolution within their experiment. The changes to microphysical processes such as activation and autoconversion from WRFv3.0.1 to WRFv3.2, along with changes in the packing of vertical levels, had more impact than the varying aerosol concentrations even though the range of aerosol tested was greater than that observed in field studies. In order to take full advantage of the input of aerosols now offered by the chemistry module in WRF, the author recommends that a fully double-moment microphysics scheme be linked, rather than the limited double-moment Lin et al. scheme that currently exists. With this modification, the WRF-Chem will be a powerful tool for studying aerosol-cloud interactions and allow comparison of results with other studies using more modern and complex microphysical parameterizations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work is a discussion of the artistic process of an artist-researcher made from field research with benzedeiras and benzedores the state of Rio Grande do Norte. This is an investigation on the cultural universe of the popular benzeção as poetic element to the artistic dance. To discuss the different stages of the research and the relationships between the artist-researcher, the benzedeiras/benzedores and the creation/composition scenic, the work takes as reference the triangular relationship created by anthropologist Claude Lévi-Strauss, in his discussion on the effectiveness of symbols of healing, adapted to the context of benzeção . For dialogue between tradition, popular knowledge, scientific and artistic knowledge this work approaches as analytical reference the epistemological model of the type rhizome proposed by Deleuze and Guattari, understanding it as a model that seeks to form a network of relations in different paths of research, to establish connections between elements without target them or subordinating them. In the universe of benzeção , benzedeiras and benzedores carry a symbolic power that issued in whispered prayers, in peculiar gestures that form crosses in space, heal those who seek your prayers and blessing. In this research, the mixture of popular knowledge, artistic and academic knowledge, born an artistic work in the context of Performing Arts, more specifically dance, and between branches, saints, candles and conversations the work allowed other looks poetic for our popular culture, (re)asserting their cultural and human values through the art

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A systematic diagrammatic expansion for Gutzwiller wavefunctions (DE-GWFs) proposed very recently is used for the description of the superconducting (SC) ground state in the two-dimensional square-lattice t-J model with the hopping electron amplitudes t (and t') between nearest (and next-nearest) neighbors. For the example of the SC state analysis we provide a detailed comparison of the method's results with those of other approaches. Namely, (i) the truncated DE-GWF method reproduces the variational Monte Carlo (VMC) results and (ii) in the lowest (zeroth) order of the expansion the method can reproduce the analytical results of the standard Gutzwiller approximation (GA), as well as of the recently proposed 'grand-canonical Gutzwiller approximation' (called either GCGA or SGA). We obtain important features of the SC state. First, the SC gap at the Fermi surface resembles a d(x2-y2) wave only for optimally and overdoped systems, being diminished in the antinodal regions for the underdoped case in a qualitative agreement with experiment. Corrections to the gap structure are shown to arise from the longer range of the real-space pairing. Second, the nodal Fermi velocity is almost constant as a function of doping and agrees semi-quantitatively with experimental results. Third, we compare the

Relevância:

30.00% 30.00%

Publicador:

Resumo:

International audience

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The share of variable renewable energy in electricity generation has seen exponential growth during the recent decades, and due to the heightened pursuit of environmental targets, the trend is to continue with increased pace. The two most important resources, wind and insolation both bear the burden of intermittency, creating a need for regulation and posing a threat to grid stability. One possibility to deal with the imbalance between demand and generation is to store electricity temporarily, which was addressed in this thesis by implementing a dynamic model of adiabatic compressed air energy storage (CAES) with Apros dynamic simulation software. Based on literature review, the existing models due to their simplifications were found insufficient for studying transient situations, and despite of its importance, the investigation of part load operation has not yet been possible with satisfactory precision. As a key result of the thesis, the cycle efficiency at design point was simulated to be 58.7%, which correlated well with literature information, and was validated through analytical calculations. The performance at part load was validated against models shown in literature, showing good correlation. By introducing wind resource and electricity demand data to the model, grid operation of CAES was studied. In order to enable the dynamic operation, start-up and shutdown sequences were approximated in dynamic environment, as far as is known, the first time, and a user component for compressor variable guide vanes (VGV) was implemented. Even in the current state, the modularly designed model offers a framework for numerous studies. The validity of the model is limited by the accuracy of VGV correlations at part load, and in addition the implementation of heat losses to the thermal energy storage is necessary to enable longer simulations. More extended use of forecasts is one of the important targets of development, if the system operation is to be optimised in future.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: The purpose of the present study was to investigate the diagnostic value of T2-mapping in acute myocarditis (ACM) and to define cut-off values for edema detection. METHODS: Cardiovascular magnetic resonance (CMR) data of 31 patients with ACM were retrospectively analyzed. 30 healthy volunteers (HV) served as a control. Additionally to the routine CMR protocol, T2-mapping data were acquired at 1.5 T using a breathhold Gradient-Spin-Echo T2-mapping sequence in six short axis slices. T2-maps were segmented according to the 16-segments AHA-model and segmental T2 values as well as the segmental pixel-standard deviation (SD) were analyzed. RESULTS: Mean differences of global myocardial T2 or pixel-SD between HV and ACM patients were only small, lying in the normal range of HV. In contrast, variation of segmental T2 values and pixel-SD was much larger in ACM patients compared to HV. In random forests and multiple logistic regression analyses, the combination of the highest segmental T2 value within each patient (maxT2) and the mean absolute deviation (MAD) of log-transformed pixel-SD (madSD) over all 16 segments within each patient proved to be the best discriminators between HV and ACM patients with an AUC of 0.85 in ROC-analysis. In classification trees, a combined cut-off of 0.22 for madSD and of 68 ms for maxT2 resulted in 83% specificity and 81% sensitivity for detection of ACM. CONCLUSIONS: The proposed cut-off values for maxT2 and madSD in the setting of ACM allow edema detection with high sensitivity and specificity and therefore have the potential to overcome the hurdles of T2-mapping for its integration into clinical routine.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

One way to achieve amplification of distal synaptic inputs on a dendritic tree is to scale the amplitude and/or duration of the synaptic conductance with its distance from the soma. This is an example of what is often referred to as “dendritic democracy”. Although well studied experimentally, to date this phenomenon has not been thoroughly explored from a mathematical perspective. In this paper we adopt a passive model of a dendritic tree with distributed excitatory synaptic conductances and analyze a number of key measures of democracy. In particular, via moment methods we derive laws for the transport, from synapse to soma, of strength, characteristic time, and dispersion. These laws lead immediately to synaptic scalings that overcome attenuation with distance. We follow this with a Neumann approximation of Green’s representation that readily produces the synaptic scaling that democratizes the peak somatic voltage response. Results are obtained for both idealized geometries and for the more realistic geometry of a rat CA1 pyramidal cell. For each measure of democratization we produce and contrast the synaptic scaling associated with treating the synapse as either a conductance change or a current injection. We find that our respective scalings agree up to a critical distance from the soma and we reveal how this critical distance decreases with decreasing branch radius.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tomato (Lycopersicon esculentum Mill.) is the second most important vegetable crop worldwide and a rich source of hydrophilic (H) and lipophilic (L) antioxidants. The H fraction is constituted mainly by ascorbic acid and soluble phenolic compounds, while the L fraction contains carotenoids (mostly lycopene), tocopherols, sterols and lipophilic phenolics [1,2]. To obtain these antioxidants it is necessary to follow appropriate extraction methods and processing conditions. In this regard, this study aimed at determining the optimal extraction conditions for H and L antioxidants from a tomato surplus. A 5-level full factorial design with 4 factors (extraction time (I, 0-20 min), temperature (T, 60-180 •c), ethanol percentage (Et, 0-100%) and solid/liquid ratio (S/L, 5-45 g!L)) was implemented and the response surface methodology used for analysis. Extractions were carried out in a Biotage Initiator Microwave apparatus. The concentration-time response methods of crocin and P-carotene bleaching were applied (using 96-well microplates), since they are suitable in vitro assays to evaluate the antioxidant activity of H and L matrices, respectively [3]. Measurements were carried out at intervals of 3, 5 and 10 min (initiation, propagation and asymptotic phases), during a time frame of 200 min. The parameters Pm (maximum protected substrate) and V m (amount of protected substrate per g of extract) and the so called IC50 were used to quantify the response. The optimum extraction conditions were as follows: r~2.25 min, 7'=149.2 •c, Et=99.1 %and SIL=l5.0 giL for H antioxidants; and t=l5.4 min, 7'=60.0 •c, Et=33.0% and S/L~l5.0 g/L for L antioxidants. The proposed model was validated based on the high values of the adjusted coefficient of determination (R2.wi>0.91) and on the non-siguificant differences between predicted and experimental values. It was also found that the antioxidant capacity of the H fraction was much higher than the L one.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mestrado em Engenharia Florestal e dos Recursos Naturais - Instituto Superior de Agronomia - UL

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The majority of the organizations store their historical business information in data warehouses which are queried to make strategic decisions by using online analytical processing (OLAP) tools. This information has to be correctly assured against unauthorized accesses, but nevertheless there are a great amount of legacy OLAP applications that have been developed without considering security aspects or these have been incorporated once the system was implemented. This work defines a reverse engineering process that allows us to obtain the conceptual model corresponding to a legacy OLAP application, and also analyses and represents the security aspects that could have established. This process has been aligned with a model-driven architecture for developing secure OLAP applications by defining the transformations needed to automatically apply it. Once the conceptual model has been extracted, it can be easily modified and improved with security, and automatically transformed to generate the new implementation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work is a discussion of the artistic process of an artist-researcher made from field research with benzedeiras and benzedores the state of Rio Grande do Norte. This is an investigation on the cultural universe of the popular benzeção as poetic element to the artistic dance. To discuss the different stages of the research and the relationships between the artist-researcher, the benzedeiras/benzedores and the creation/composition scenic, the work takes as reference the triangular relationship created by anthropologist Claude Lévi-Strauss, in his discussion on the effectiveness of symbols of healing, adapted to the context of benzeção . For dialogue between tradition, popular knowledge, scientific and artistic knowledge this work approaches as analytical reference the epistemological model of the type rhizome proposed by Deleuze and Guattari, understanding it as a model that seeks to form a network of relations in different paths of research, to establish connections between elements without target them or subordinating them. In the universe of benzeção , benzedeiras and benzedores carry a symbolic power that issued in whispered prayers, in peculiar gestures that form crosses in space, heal those who seek your prayers and blessing. In this research, the mixture of popular knowledge, artistic and academic knowledge, born an artistic work in the context of Performing Arts, more specifically dance, and between branches, saints, candles and conversations the work allowed other looks poetic for our popular culture, (re)asserting their cultural and human values through the art

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Introduction: The In vitro-in vivo pharmacokinetic correlation models (IVIVC) are a fundamental part of the drug discovery and development process. The ability to accurately predict the in vivo pharmacokinetic profile of a drug based on in vitro observations can have several applications during a successful development process. Objective: To develop a comprehensive model to predict the in vivo absorption of antiretroviral drugs based on permeability studies, in vitro and in vivo solubility and demonstrate its correlation with the pharmacokinetic profile in humans. Methods: Analytical tools to test the biopharmaceutical properties of stavudine, lamivudine y zidovudine were developed. The kinetics of dissolution, permeability in caco-2 cells and pharmacokinetics of absorption in rabbits and healthy volunteers were evaluated. Results: The cumulative areas under the curve (AUC) obtained in the permeability study with Caco-2 cells, the dissolution study and the pharmacokinetics in rabbits correlated with the cumulative AUC values in humans. These results demonstrated a direct relation between in vitro data and absorption, both in humans and in the in vivo model. Conclusions: The analytical methods and procedures applied to the development of an IVIVC model showed a strong correlation among themselves. These IVIVC models are proposed as alternative and cost/effective methods to evaluate the biopharmaceutical properties that determine the bioavailability of a drug and their application includes the development process, quality assurance, bioequivalence studies and pharmacosurveillance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Most mechanical components experience multi-axial cyclic loading conditions during service. Experimental analysis of fatigue cracks under such conditions is not easy and most works tend to focus more on the simpler but less realistic case of uni-axial loading. Consequently, there are many uncertainties related to the load sequence effect that are now well known and are not normally incorporated into the growth models. The current work presents a new methodology for evaluating overload effect in biaxial fatigue cracks. The methodology includes evaluation of mixed-mode (KI and KII) stress intensity factor and the Crack Opening Displacement for samples with and without overload cycle under biaxial loading. The methodology is tested under a range of crack lengths. All crack-tip information is obtained with a hybrid methodology that combines experimental full-field digital image correlation data and Williams' elastic model describing the crack-tip field.