972 resultados para 2 LINEAR CHAINS
Comparative stability studies of poly(2-methyl-2-oxazoline) and poly(ethylene glycol) brush coatings
Resumo:
Non-fouling surfaces that resist non-specific adsorption of proteins, bacteria, and higher organisms are of particular interest in diverse applications ranging from marine coatings to diagnostic devices and biomedical implants. Poly(ethylene glycol) (PEG) is the most frequently used polymer to impart surfaces with such non-fouling properties. Nevertheless, limitations in PEG stability have stimulated research on alternative polymers that are potentially more stable than PEG. Among them, we previously investigated poly(2-methyl-2-oxazoline) (PMOXA), a peptidomimetic polymer, and found that PMOXA shows excellent anti-fouling properties. Here, we compare the stability of films self-assembled from graft copolymers exposing a dense brush layer of PEG and PMOXA side chains, respectively, in physiological and oxidative media. Before media exposure both film types prevented the adsorption of full serum proteins to below the detection limit of optical waveguide in situ measurements. Before and after media exposure for up to 2 weeks, the total film thickness, chemical composition, and total adsorbed mass of the films were quantified using variable angle spectroscopic ellipsometry (VASE), X-ray photoelectron spectroscopy (XPS), and optical waveguide lightmode spectroscopy (OWLS), respectively. We found (i) that PMOXA graft copolymer films were significantly more stable than PEG graft copolymer films and kept their protein-repellent properties under all investigated conditions and (ii) that film degradation was due to side chain degradation rather than due to copolymer desorption.
Resumo:
OBJECTIVE: To report stabilization of closed, comminuted distal metaphyseal transverse fractures of the left tibia and fibula in a tiger using a hybrid circular-linear external skeletal fixator. STUDY DESIGN: Clinical report. ANIMAL: Juvenile tiger (15 months, 90 kg). METHODS: From imaging studies, the tiger had comminuted distal metaphyseal transverse fractures of the left tibia and fibula, with mild caudolateral displacement and moderate compression. Multiple fissures extended from the fractures through the distal metaphyses, extending toward, but not involving the distal tibial and fibular physes. A hybrid circular-linear external skeletal fixator was applied by closed reduction, to stabilize the fractures. RESULTS: The fractures healed and the fixator was removed 5 weeks after stabilization. Limb length and alignment were similar to the normal contralateral limb at hospital discharge, 8 weeks after surgery. Two weeks later, the tiger had fractures of the right tibia and fibula and was euthanatized. Necropsy confirmed pathologic fractures ascribed to copper deficiency. CONCLUSION: Closed application of the hybrid construct provided sufficient stability to allow this 90 kg tiger's juxta-articular fractures to heal with minimal complications and without disrupting growth from the adjacent physes.
Resumo:
End-brominated poly(methyl methacrylate) (PMMABr) was prepared by atom transfer radical polymerization (ATRP) and employed in a series of atom transfer radical coupling (ATRC) and radical trap-assisted ATRC (RTA-ATRG) reactions. When coupling reactions were performed in the absence of a nitroso radical trap-traditional ATRC condition-very little coupling of the PMMA chains was observed, consistent with disproportionation as the major termination pathway for two PMMA chain-end radicals in our reactions. When 2-methyl-2-nitrosopropane (MNP) was used as the radical trap, coupling of the PMMA chains in this attempted RTA-ATRC reaction was again unsuccessful, owing to capping of the PMMA chains with a bulky nitroxide and preventing further coupling. Analogous reactions performed using nitrosobenzene (NBz) as the radical trap showed significant dimerization, as observed by gel permeation chromatography (GPC) by a shift in the apparent molecular weight compared to the PMMABr precursors. The extent of coupling was found to depend on the concentrion of NBz compared to the PMMABr chain ends, as well as the temperature and time of the coupling reaction. To a lesser extent, the concentrations of copper(I) bromide (CuBr), nitrogen ligand (N,N,N',N',N"-pentamethyldiethylenetriamine = PMDETA), and elemental copper (Cu) were also found to play a role in the success of the RTA-ATRC reaction. The highest levels of dimerization were observed when the coupling reaction was carried out at 80 degrees C for 0.5h, with ratio of 1:4:2.5:8:1 equiv of NBz: CuBr:Cu:PMDETA:PMMABr.
Resumo:
The aim of this study is to develop a new simple method for analyzing one-dimensional transcranial magnetic stimulation (TMS) mapping studies in humans. Motor evoked potentials (MEP) were recorded from the abductor pollicis brevis (APB) muscle during stimulation at nine different positions on the scalp along a line passing through the APB hot spot and the vertex. Non-linear curve fitting according to the Levenberg-Marquardt algorithm was performed on the averaged amplitude values obtained at all points to find the best-fitting symmetrical and asymmetrical peak functions. Several peak functions could be fitted to the experimental data. Across all subjects, a symmetric, bell-shaped curve, the complementary error function (erfc) gave the best results. This function is characterized by three parameters giving its amplitude, position, and width. None of the mathematical functions tested with less or more than three parameters fitted better. The amplitude and position parameters of the erfc were highly correlated with the amplitude at the hot spot and with the location of the center of gravity of the TMS curve. In conclusion, non-linear curve fitting is an accurate method for the mathematical characterization of one-dimensional TMS curves. This is the first method that provides information on amplitude, position and width simultaneously.
Resumo:
Turrialba is one of the largest and most active stratovolcanoes in the Central Cordillera of Costa Rica and an excellent target for validation of satellite data using ground based measurements due to its high elevation, relative ease of access, and persistent elevated SO2 degassing. The Ozone Monitoring Instrument (OMI) aboard the Aura satellite makes daily global observations of atmospheric trace gases and it is used in this investigation to obtain volcanic SO2 retrievals in the Turrialba volcanic plume. We present and evaluate the relative accuracy of two OMI SO2 data analysis procedures, the automatic Band Residual Index (BRI) technique and the manual Normalized Cloud-mass (NCM) method. We find a linear correlation and good quantitative agreement between SO2 burdens derived from the BRI and NCM techniques, with an improved correlation when wet season data are excluded. We also present the first comparisons between volcanic SO2 emission rates obtained from ground-based mini-DOAS measurements at Turrialba and three new OMI SO2 data analysis techniques: the MODIS smoke estimation, OMI SO2 lifetime, and OMI SO2 transect techniques. A robust validation of OMI SO2 retrievals was made, with both qualitative and quantitative agreements under specific atmospheric conditions, proving the utility of satellite measurements for estimating accurate SO2 emission rates and monitoring passively degassing volcanoes.
Resumo:
This morning Dr. Battle will review basic concepts of linear functions and piecewise functions and how they can be used as models for real-world applications. She will also introduce techniques for using a spreadsheet to analyze data.
Resumo:
This morning Dr. Battle will introduce descriptive statistics and linear regression and how to apply these concepts in mathematical modeling. You will also learn how to use a spreadsheet to help with statistical analysis and to create graphs.
Resumo:
The purpose of this retrospective study was to intra-individually compare the image quality of computed radiography (CR) and low-dose linear-slit digital radiography (LSDR) for supine chest radiographs. A total of 90 patients (28 female, 62 male; mean age, 55.1 years) imaged with CR and LSDR within a mean time interval of 2.8 days +/- 3.0 were included in this study. Two independent readers evaluated the image quality of CR and LSDR based on modified European Guidelines for Quality Criteria for chest X-ray. The Wilcoxon test was used to analyse differences between the techniques. The overall image quality of LSDR was significantly better than the quality of CR (9.75 vs 8.16 of a maximum score of 10; p < 0.001). LSDR performed significantly better than CR for delineation of anatomical structures in the mediastinum and the retrocardiac lung (p < 0.001). CR was superior to LSDR for visually sharp delineation of the lung vessels and the thin linear structures in the lungs. We conclude that LSDR yields better image quality and may be more suitable for excluding significant pathological features of the chest in areas with high attenuation compared with CR.
Resumo:
The human immunodeficiency virus-1 reverse transcriptase inhibitory activity of 2-(2,6-disubstituted phenyl)-3-(substituted pyrimidin-2-yl)-thiazolidin-4-ones have been analyzed using combinatorial protocol in multiple linear regression (CP-MLR) with several electronic and molecular surface area features of the compounds obtained from Molecular Operating Environment (MOE) software. The study has indicated the role of different charged molecular surface areas in modeling the inhibitory activity of the compounds. The derived models collectively suggested that the compounds should be compact without bulky substitutions on its peripheries for better HIV-1 RT inhibitory activity. It also emphasized the necessity of hydrophobicity and compact structural features for their activity. The scope of the descriptors identified for these analogues have been verified by extending the dataset with different 2-(disubstituted phenyl)-3-(substituted pyridin-2-yl)-thiazolidin-4-ones. The joint analysis of extended dataset highlighted the information content of identified descriptors in modeling the HIV-1 RT inhibitory activity of the compounds.
Resumo:
The HIV-1 RT inhibitory activity of 2-(2,6-dihalophenyl)-3-(substituted pyridin-2-yl)-thiazolidin-4-ones has been analyzed with different topological descriptors obtained from DRAGON software. Here, simple topological descriptors (TOPO), Galvez topological charge indices (GVZ) and 2D autocorrelation descriptors (2DAUTO) have been found to yield good predictive models for the activity of these compounds. The correlations obtained from the TOPO class descriptors suggest that less extended or compact saturated structural templates would be better for the activity. The participating GVZ class descriptors suggest that they have same degree of influence on the activity. In 2DAUTO class, the large participation of descriptors of lags seven and three indicate the association of activity information with the seven and three centered structural fragments of these compounds. The physicochemical weighting components of these descriptors suggest homogeneous influence of mass, volume, electronegativity and/ or polarizability on the activity.
Resumo:
Phospholipids containing photolysable carhene precursors (beta-trifluoro-a-diazopropionoxy and m-diazirinophenoxy groups) in w-positions of sn-2 fatty acyl chains were prepared. Photolysis of their vesicles produced crosslinked products in 40-60 % yields. Crosslinking was mostly intermolecular and occurred bv carbene insertion into the C-H bonds of a second fatty acyl chain. Crosslinking products were characterized by (i) their gel permeation behavior, (ii) analysis of produets formed by base-catalyzed transesterification. (iii) degradation with phosphoiipases A2 and C, (iv) gas chromatography/mass spectrometry, and-(v) use of mixtures of phospholipids carrying thf' carhene precursors and a phospholipid containing radioactively labeled fatty acyl groups. Nitrenes generated from the aliphatic or aromatic azido groups in phospholipids were unsatisfactory for forming crosslinks by insertion in C-H bond
Resumo:
Sonicated vesicles of l-fatty acyl-2-w-(2-diazo-3.3,3-trifluoropropionoxy) fatty acyl sn-glycero-3-phosphorylcholines were shown recently to form intermolecular crosslinks by insertion of the photogenerated carbene into a C-H bond of a neighboring hydrocarbon chain. We now report that photolysis of multilamellar dispersions gives a second series of products in which carbene insertion is accompanied by elimination of a molecule of hydrogen fluoride. The sites of crosslinking in the latter compounds have been studied by mass spectrometry using phospholipids with varying chain lengths of the fatty acyl groups carrying the carbene precursor. The patterns observed show that the point of maximum crosslinking is consistent with the recent conclusion that in phospholipids the sn-2 fatty acyl chain trails the sn-1 chain by 2-4 atoms.
Resumo:
New fluorinated hybrid solids [Mo2F2O5(tr2pr)] (1), [Co3(tr2pr)2(MoO4)2F2]·7H2O (2), and [Co3(H2O)2(tr2pr)3(Mo8O26F2)]·3H2O (3) (tr2pr = 1,3-bis(1,2,4-triazol-4-yl)propane) were prepared from the reaction systems consisting of Co(OAc)2/CoF2 and MoO3/(NH4)6Mo7O24, as CoII and MoVI sources, in water (2) or in aqueous HF (1, 3) employing mild hydrothermal conditions. The tr2pr ligand serves as a conformationally flexible tetradentate donor. In complex 1, the octahedrally coordinated Mo atoms are linked in the discrete corner-sharing {Mo2(μ2-O)F2O4N4} unit in which a pair of tr-heterocycles (tr = 1,2,4-triazole) is arranged in cis-positions opposite to “molybdenyl” oxygen atoms. The anti−anti conformation type of tr2pr facilitates the tight zigzag chain packing motif. The crystal structure of the mixed-anion complex salt 2 consists of trinuclear [Co3(μ3-MoO4)2(μ2-F)2] units self-assembling in CoII-undulating chains (Co···Co 3.0709(15) and 3.3596(7) Å), which are cross-linked by tr2pr in layers. In 3, containing condensed oxyfluoromolybdate species, linear centrosymmetric [Co3(μ2-tr)6]6+ SBUs are organized at distances of 10.72−12.45 Å in an α-Po-like network using bitopic tr-linkers. The octahedral {N6} and {N3O3} environments of the central and peripheral cobalt atoms, respectively, are filled by triazole N atoms, water molecules, and coordinating [Mo8O26F2]6− anions. Acting as a tetradentate O-donor, each difluorooctamolybdate anion anchors four [Co3(μ2-tr)6]6+ units through their peripheral Co-sites, which consequently leads to a novel type of a two-nodal 4,10-c net with the Schläfli symbol {32.43.5}{34.420.516.65}. The 2D and 3D coordination networks of 2 and 3, respectively, are characterized by significant overall antiferromagnetic exchange interactions (J/k) between the CoII spin centers on the order of −8 and −4 K. The [Mo8O26F2]6− anion is investigated in detail by quantum chemical calculations.
Resumo:
2-arachidonyl glycerol (2-AG) allosterically potentiates GABAA receptors via a binding site located in transmembrane segment M4 of the β2 subunit. Two amino acid residues have been described that are essential for this effect. With the aim to further describe this potential drug target, we performed a cysteine scanning of the entire M4 and part of M3. All four residues in M4 affecting the potentiation here and the two already identified residues locate to the same side of the α-helix. This side is exposed to M3, where further residues were identified. From the fact that the important residues span > 18 Å, we conclude that the hydrophobic tail of the bound 2-AG molecule must be near linear and that the site mainly locates to the inner leaflet but stretches far into the membrane. The influence of the structure of the head group of the ligand molecule on the activity of the molecule was also investigated. We present a model of 2-AG docked to the GABAA receptor.