999 resultados para 160699 Political Science not elsewhere classified
Resumo:
The interactive nature of Information and Communication Technologies (ICT) is the impetus for the adoption of digital technologies by students for socialising and communicating in new ways. In particular these new ways of communication have embraced web 2.0 technologies such as Facebook© ©, however, teaching practices within educational institutions have remained relatively unchanged. This paper explores the use of the web 2.0 technology Facebook© in a Higher Educational setting to support undergraduate students. It further highlights how students in a developing country currently use this technology and their expectations for the future use of this web 2.0 technology.
Resumo:
There is widespread recognition that higher education institutions (HEIs) must actively support commencing students to ensure equity in access to the opportunities afforded by higher education. This role is particularly critical for students who because of educational, cultural or financial disadvantage or because they are members of social groups currently under-represented in higher education, may require additional transitional support to “level the playing field.” The challenge faced by HEIs is to provide this “support” in a way that is integrated into regular teaching and learning practices and reaches all commencing students. The Student Success Program (SSP) is an intervention in operation at the Queensland University of Technology (QUT) designed to identify and support those students deemed to be at risk of disengaging from their learning and their institution. Two sets of evidence of the impact of the SSP are presented: First, its expansion (a) from a one-faculty pilot project (Nelson, Duncan & Clarke, 2009) to all faculties and (b) into a variety of applications mirroring the student life cycle; and second, an evaluation of the impact of the SSP on students exposed to it. The outcomes suggest that: the SSP is an example of good practice that can be successfully applied to a variety of learning contexts and student enrolment situations; and the impact of the intervention on student persistence is sustained for at least 12 months and positively influences student retention. It is claimed that the good practice evidenced by the SSP is dependent on its integration into the broader First Year Experience Program at QUT as an example of transition pedagogy in action.
Resumo:
The Granadilla eruption at 600 ka was one of the largest phonolitic explosive eruptions from the Las Cañadas volcano on Tenerife, producing a classical plinian eruptive sequence of a widespread pumice fall deposit overlain by an ignimbrite. The eruption resulted in a major phase of caldera collapse that probably destroyed the shallow-level magma chamber system. Granadilla pumices contain a diverse phenocryst assemblage of alkali feldspar + biotite + sodian diopside to aegirine–augite + titanomagnetite + ilmenite + nosean/haüyne + titanite + apatite; alkali feldspar is the dominant phenocryst and biotite is the main ferromagnesian phase. Kaersutite and partially resorbed plagioclase (oligoclase to sodic andesine) are present in some eruptive units, particularly in pumice erupted during the early plinian phase, and in the Granadilla ignimbrite at the top of the sequence. Associated with the kaersutite and plagioclase are small clots of microlitic plagioclase and kaersutite interpreted as quenched blebs of tephriphonolitic magma within the phonolite pumice. The Granadilla Member has previously been recognized as an example of reverse-then-normal compositional zonation, where the zonation is primarily expressed in terms of substantial variations in trace element abundances with limited major element variation (cryptic zonation). Evidence for cryptic zonation is also provided by the chemistry of the phenocryst phases, and corresponding changes in intensive parameters (e.g. T, f O2, f H2O). Geothermometry estimates indicate that the main body of phonolite magma had a temperature gradient from 860 °C to ∼790 °C, with hotter magma (≥900 °C) tapped at the onset and terminal phases of the eruption. The reverse-then-normal chemical and thermal zonation reflects the initial tapping of a partially hybridized magma (mixing of phonolite and tephriphonolite), followed by the more sequential tapping of a zoned and relatively large body of highly evolved phonolite at a new vent and during the main plinian phase. This suggests that the different magma types within the main holding chamber could have been laterally juxtaposed, as well as in a density-stratified arrangement. Correlations between the presence of mixed phenocryst populations (i.e. presence of plagioclase and kaersutite) and coarser pumice fall layers suggest that increased eruption vigour led to the tapping of hybridized and/or less evolved magma probably from greater depths in the chamber. New oxygen isotope data for glass and mineral separates preclude syn-eruptive interaction between the vesiculating magma and hydrothermal fluids as the cause of the Sr isotope disequilibrium identified previously for the deposit. Enrichment in radiogenic Sr in the pumice glass has more likely been due to low-temperature exchange with meteoric water that was enriched in 87Sr by sea spray, which may be a common process affecting porous and glassy pyroclastic deposits on oceanic islands.
Resumo:
The development of effective safety regulations for unmanned aircraft systems (UAS) is an issue of paramount concern for industry. The development of this framework is a prerequisite for greater UAS access to civil airspace and, subsequently, the continued growth of the UAS industry. The direct use of the existing conventionally piloted aircraft (CPA) airworthiness certification framework for the regulation of UAS has a number of limitations. The objective of this paper is to present one possible approach for the structuring of airworthiness regulations for civilian UAS. The proposed approach facilitates a more systematic, objective and justifiable method for managing the spectrum of risk associated with the diversity of UAS and their potential operations. A risk matrix is used to guide the development of an airworthiness certification matrix (ACM). The ACM provides a structured categorisation that facilitates the future tailoring of regulations proportionate to the levels of risk associated with the operation of the UAS. As a result, an objective and traceable link may be established between mandated regulations and the overarching objective for an equivalent level of safety to CPA. The ACM also facilitates the systematic consideration of a range of technical and operational mitigation strategies. For these reasons, the ACM is proposed as a suitable method for the structuring of an airworthiness certification framework for civil or commercially operated UAS (i.e., the UAS equivalent in function to the Part 21 regulations for civil CPA) and for the further structuring of requirements on the operation of UAS in un-segregated airspace.
Resumo:
This paper describes the Smart Skies project, an ambitious and world-leading research endeavor exploring the development of key enabling technologies, which support the efficient utilization of airspace by manned and unmanned airspace users. This paper provides a programmatic description of the research and development of: an automated separation management system, a mobile aircraft tracking system, and aircraft-based sense-and-act technologies. A summary of the results from a series of real-world flight testing campaigns is also presented.
Resumo:
The accumulation and perpetuation of viral pathogens over generations of clonal propagation in crop species such as sweet potato, Ipomoea batatas,inevitably result in a reduction in crop yield and quality. This study was conducted at Bundaberg, Australia to compare the productivity of field-derived and pathogen-tested (PT)clones of 14 sweet potato cultivars and the yield benefits of using healthy planting materials. The field-derived clonal materials were exposed to the endemic viruses, while the PT clones were subjected to thermotherapy and meristem-tip culture to eliminate viral pathogens. The plants were indexed for viruses using nitrocellulose membrane-enzyme-linked immunosorbent assay and graft-inoculations onto Ipomoea setosa. A net benefit of 38% in storage root yield was realised from using PT materials in this study.Conversely, in a similar study previously conducted at Kerevat, Papua New Guinea (PNG), a net deficit of 36% was realised. This reinforced our finding that the response to pathogen testing was cultivar dependent and that the PNG cultivars in these studies generally exhibited increased tolerance to the endemic viruses present at the respective trial sites as manifested in their lack of response from the use of PT clones. They may be useful sources for future resistance breeding efforts. Nonetheless, the potential economic gain from using PT stocks necessitates the use of pathogen testing on virus-susceptible commercial cultivars.
Resumo:
Personalised social matching systems can be seen as recommender systems that recommend people to others in the social networks. However, with the rapid growth of users in social networks and the information that a social matching system requires about the users, recommender system techniques have become insufficiently adept at matching users in social networks. This paper presents a hybrid social matching system that takes advantage of both collaborative and content-based concepts of recommendation. The clustering technique is used to reduce the number of users that the matching system needs to consider and to overcome other problems from which social matching systems suffer, such as cold start problem due to the absence of implicit information about a new user. The proposed system has been evaluated on a dataset obtained from an online dating website. Empirical analysis shows that accuracy of the matching process is increased, using both user information (explicit data) and user behavior (implicit data).
A Modified inverse integer Cholesky decorrelation method and the performance on ambiguity resolution
Resumo:
One of the research focuses in the integer least squares problem is the decorrelation technique to reduce the number of integer parameter search candidates and improve the efficiency of the integer parameter search method. It remains as a challenging issue for determining carrier phase ambiguities and plays a critical role in the future of GNSS high precise positioning area. Currently, there are three main decorrelation techniques being employed: the integer Gaussian decorrelation, the Lenstra–Lenstra–Lovász (LLL) algorithm and the inverse integer Cholesky decorrelation (IICD) method. Although the performance of these three state-of-the-art methods have been proved and demonstrated, there is still a potential for further improvements. To measure the performance of decorrelation techniques, the condition number is usually used as the criterion. Additionally, the number of grid points in the search space can be directly utilized as a performance measure as it denotes the size of search space. However, a smaller initial volume of the search ellipsoid does not always represent a smaller number of candidates. This research has proposed a modified inverse integer Cholesky decorrelation (MIICD) method which improves the decorrelation performance over the other three techniques. The decorrelation performance of these methods was evaluated based on the condition number of the decorrelation matrix, the number of search candidates and the initial volume of search space. Additionally, the success rate of decorrelated ambiguities was calculated for all different methods to investigate the performance of ambiguity validation. The performance of different decorrelation methods was tested and compared using both simulation and real data. The simulation experiment scenarios employ the isotropic probabilistic model using a predetermined eigenvalue and without any geometry or weighting system constraints. MIICD method outperformed other three methods with conditioning improvements over LAMBDA method by 78.33% and 81.67% without and with eigenvalue constraint respectively. The real data experiment scenarios involve both the single constellation system case and dual constellations system case. Experimental results demonstrate that by comparing with LAMBDA, MIICD method can significantly improve the efficiency of reducing the condition number by 78.65% and 97.78% in the case of single constellation and dual constellations respectively. It also shows improvements in the number of search candidate points by 98.92% and 100% in single constellation case and dual constellations case.
Resumo:
Early this year the Australian Department of Environment and Heritage commissioned a desktop literature review with a focus on ultrafine particles including analysis of health impacts of the particles as well as the impact of sulphur content of diesel fuel on ultrafine particle emission. This paper summarizes the findings of the report on the link between the sulphur content of diesel fuels and the number of ultrafine particles in diesel emissions. The literature search on this topic resulted in over 150 publications. The majority of these publications, although investigating different aspects of the influence of fuel sulphur level on diesel vehicle emissions, were not directly concerned with ultrafine particle emissions. A specific focus of the paper is on: ----- ----- summary of state of knowledge established by the review, and ----- ----- summary of recommendations on the research priorities for Australia to address the information gaps for this issue, and on the appropriate management responses.
Resumo:
As part of a larger indoor environmental study, residential indoor and outdoor levels of nitrogen dioxide (NO2) were measured for 14 houses in a suburb of Brisbane, Queensland, Australia. Passive samplers were used for 48-h sampling periods during the winter of 1999. The average indoor and outdoor NO2 levels were 13.8 ± 6.3 and 16.7 ± 4.2 ppb, respectively. The indoor/outdoor NO2 concentration ratio ranged from 0.4 to 2.3, with a median value of 0.82. The results of statistic analyses indicated that there was no significant correlation between indoor and outdoor NO2 concentrations, or between indoor and fixed site NO2 monitoring station concentrations. However, there was a significant correlation between outdoor and fixed site NO2 monitoring station concentrations. There was also a significant correlation between indoor NO2 concentration and indoor submicrometre (0.007–0.808 μm) aerosol particle number concentrations. The results in this study indicated indoor NO2 levels are significantly affected by indoor NO2 sources, such as a gas stove and cigarette smoking. It implies that the outdoor or fixed site monitoring concentration alone is a poor predictor of indoor NO2 concentration.
Resumo:
The INEX 2010 Focused Relevance Feedback track offered a refined approach to the evaluation of Focused Relevance Feedback algorithms through simulated exhaustive user feedback. As in traditional approaches we simulated a user-in-the loop by re-using the assessments of ad-hoc retrieval obtained from real users who assess focused ad-hoc retrieval submissions. The evaluation was extended in several ways: the use of exhaustive relevance feedback over entire runs; the evaluation of focused retrieval where both the retrieval results and the feedback are focused; the evaluation was performed over a closed set of documents and complete focused assessments; the evaluation was performed over executable implementations of relevance feedback algorithms; and �finally, the entire evaluation platform is reusable. We present the evaluation methodology, its implementation, and experimental results obtained for nine submissions from three participating organisations.
Resumo:
Bridges are valuable assets of every nation. They deteriorate with age and often are subjected to additional loads or different load patterns than originally designed for. These changes in loads can cause localized distress and may result in bridge failure if not corrected in time. Early detection of damage and appropriate retrofitting will aid in preventing bridge failures. Large amounts of money are spent in bridge maintenance all around the world. A need exists for a reliable technology capable of monitoring the structural health of bridges, thereby ensuring they operate safely and efficiently during the whole intended lives. Monitoring of bridges has been traditionally done by means of visual inspection. Visual inspection alone is not capable of locating and identifying all signs of damage, hence a variety of structural health monitoring (SHM) techniques is used regularly nowadays to monitor performance and to assess condition of bridges for early damage detection. Acoustic emission (AE) is one technique that is finding an increasing use in SHM applications of bridges all around the world. The chapter starts with a brief introduction to structural health monitoring and techniques commonly used for monitoring purposes. Acoustic emission technique, wave nature of AE phenomenon, previous applications and limitations and challenges in the use as a SHM technique are also discussed. Scope of the project and work carried out will be explained, followed by some recommendations of work planned in future.
Resumo:
Throughout this workshop session we have looked at various configurations of Sage as well as using the Sage UI to run Sage applications (e.g. the image viewer). More advanced usage of Sage has been demonstrated using a Sage compatible version of Paraview highlighting the potential of parallel rendering. The aim of this tutorial session is to give a practical introduction to developing visual content for a tiled display using the Sage libraries. After completing this tutorial you should have the basic tools required to develop your own custom Sage applications. This tutorial is designed for software developers and intermediate programming knowledge is assumed, along with some introductory OpenGL . You will be required to write small portions of C/C++ code to complete this worksheet. However if you do not feel comfortable writing code (or have never written in C or C++), we will be on hand throughout this session so feel free to ask for some help. We have a number of machines in this lab running a VNC client to a virtual machine running Fedora 12. You should all be able to log in with the username “escience”, and password “escience10”. Some of the commands in this worksheet require you to run them as the root user, so note the password as you may need to use it a few times. If you need to access the Internet, then use the username “qpsf01”, password “escience10”
Resumo:
Scalable high-resolution tiled display walls are becoming increasingly important to decision makers and researchers because high pixel counts in combination with large screen areas facilitate content rich, simultaneous display of computer-generated visualization information and high-definition video data from multiple sources. This tutorial is designed to cater for new users as well as researchers who are currently operating tiled display walls or 'OptiPortals'. We will discuss the current and future applications of display wall technology and explore opportunities for participants to collaborate and contribute in a growing community. Multiple tutorial streams will cover both hands-on practical development, as well as policy and method design for embedding these technologies into the research process. Attendees will be able to gain an understanding of how to get started with developing similar systems themselves, in addition to becoming familiar with typical applications and large-scale visualisation techniques. Presentations in this tutorial will describe current implementations of tiled display walls that highlight the effective usage of screen real-estate with various visualization datasets, including collaborative applications such as visualcasting, classroom learning and video conferencing. A feature presentation for this tutorial will be given by Jurgen Schulze from Calit2 at the University of California, San Diego. Jurgen is an expert in scientific visualization in virtual environments, human-computer interaction, real-time volume rendering, and graphics algorithms on programmable graphics hardware.
Resumo:
In 2006, the Faculty of Built Environment and Engineering introduced the first faculty wide unit dedicated to sustainability at any Australian University. BEB200 Introducing Sustainability has semester enrolments of up to 1500 students. Instruments such as lectures, readings, field visits, group projects and structured tutorial activities are used and have evolved over the last five years in response to student and staff feedback and attempts to better engage students. More than seventy staff have taught in the unit, which is in its final offering in this form in 2010. This paper reflects on the experiences of five academics who have played key roles in the development and teaching of this unit over the last five years. They argue that sustainability is a paradigm that allows students to explore other ways of knowing as they engage with issues in a complex world, not an end in itself. From the students’ perspective, grappling with such issues enables them to move towards a context in which they can understand their own discipline and its role in the contradictory and rapidly changing professional world. Insights are offered into how sustainability units may be developed in the future.