913 resultados para 004 - Informatik (Data processing Computer science)
Resumo:
In this paper, we describe dynamic unicast to increase communication efficiency in opportunistic Information-centric networks. The approach is based on broadcast requests to quickly find content and dynamically creating unicast links to content sources without the need of neighbor discovery. The links are kept temporarily as long as they deliver content and are quickly removed otherwise. Evaluations in mobile networks show that this approach maintains ICN flexibility to support seamless mobile communication and achieves up to 56.6% shorter transmission times compared to broadcast in case of multiple concurrent requesters. Apart from that, dynamic unicast unburdens listener nodes from processing unwanted content resulting in lower processing overhead and power consumption at these nodes. The approach can be easily included into existing ICN architectures using only available data structures.
Resumo:
Information-centric networking (ICN) has been proposed to cope with the drawbacks of the Internet Protocol, namely scalability and security. The majority of research efforts in ICN have focused on routing and caching in wired networks, while little attention has been paid to optimizing the communication and caching efficiency in wireless networks. In this work, we study the application of Raptor codes to Named Data Networking (NDN), which is a popular ICN architecture, in order to minimize the number of transmitted messages and accelerate content retrieval times. We propose RC-NDN, which is a NDN compatible Raptor codes architecture. In contrast to other coding-based NDN solutions that employ network codes, RC-NDN considers security architectures inherent to NDN. Moreover, different from existing network coding based solutions for NDN, RC-NDN does not require significant computational resources, which renders it appropriate for low cost networks. We evaluate RC-NDN in mobile scenarios with high mobility. Evaluations show that RC-NDN outperforms the original NDN significantly. RC-NDN is particularly efficient in dense environments, where retrieval times can be reduced by 83% and the number of Data transmissions by 84.5% compared to NDN.
Resumo:
Extraction of both pelvic and femoral surface models of a hip joint from CT data for computer-assisted pre-operative planning of hip arthroscopy is addressed. We present a method for a fully automatic image segmentation of a hip joint. Our method works by combining fast random forest (RF) regression based landmark detection, atlas-based segmentation, with articulated statistical shape model (aSSM) based hip joint reconstruction. The two fundamental contributions of our method are: (1) An improved fast Gaussian transform (IFGT) is used within the RF regression framework for a fast and accurate landmark detection, which then allows for a fully automatic initialization of the atlas-based segmentation; and (2) aSSM based fitting is used to preserve hip joint structure and to avoid penetration between the pelvic and femoral models. Validation on 30 hip CT images show that our method achieves high performance in segmenting pelvis, left proximal femur, and right proximal femur surfaces with an average accuracy of 0.59 mm, 0.62 mm, and 0.58 mm, respectively.
Resumo:
In this paper we propose a new fully-automatic method for localizing and segmenting 3D intervertebral discs from MR images, where the two problems are solved in a unified data-driven regression and classification framework. We estimate the output (image displacements for localization, or fg/bg labels for segmentation) of image points by exploiting both training data and geometric constraints simultaneously. The problem is formulated in a unified objective function which is then solved globally and efficiently. We validate our method on MR images of 25 patients. Taking manually labeled data as the ground truth, our method achieves a mean localization error of 1.3 mm, a mean Dice metric of 87%, and a mean surface distance of 1.3 mm. Our method can be applied to other localization and segmentation tasks.
Resumo:
Over the years, a drastic increase in online information disclosure spurs a wave of concerns from multiple stakeholders. Among others, users resent the “behind the closed doors” processing of their personal data by companies. Privacy policies are supposed to inform users how their personal information is handled by a website. However, several studies have shown that users rarely read privacy policies for various reasons, not least because limitedly readable policy texts are difficult to understand. Based on our online survey with over 440 responses, we examine the objective and subjective readability of privacy policies and investigate their impact on users’ trust in five big Internet services. Our findings show the stronger a user believes in having understood the privacy policy, the higher he or she trusts a web site across all companies we studied. Our results call for making readability of privacy policies more accessible to an average reader.
Resumo:
Service providers make use of cost-effective wireless solutions to identify, localize, and possibly track users using their carried MDs to support added services, such as geo-advertisement, security, and management. Indoor and outdoor hotspot areas play a significant role for such services. However, GPS does not work in many of these areas. To solve this problem, service providers leverage available indoor radio technologies, such as WiFi, GSM, and LTE, to identify and localize users. We focus our research on passive services provided by third parties, which are responsible for (i) data acquisition and (ii) processing, and network-based services, where (i) and (ii) are done inside the serving network. For better understanding of parameters that affect indoor localization, we investigate several factors that affect indoor signal propagation for both Bluetooth and WiFi technologies. For GSM-based passive services, we developed first a data acquisition module: a GSM receiver that can overhear GSM uplink messages transmitted by MDs while being invisible. A set of optimizations were made for the receiver components to support wideband capturing of the GSM spectrum while operating in real-time. Processing the wide-spectrum of the GSM is possible using a proposed distributed processing approach over an IP network. Then, to overcome the lack of information about tracked devices’ radio settings, we developed two novel localization algorithms that rely on proximity-based solutions to estimate in real environments devices’ locations. Given the challenging indoor environment on radio signals, such as NLOS reception and multipath propagation, we developed an original algorithm to detect and remove contaminated radio signals before being fed to the localization algorithm. To improve the localization algorithm, we extended our work with a hybrid based approach that uses both WiFi and GSM interfaces to localize users. For network-based services, we used a software implementation of a LTE base station to develop our algorithms, which characterize the indoor environment before applying the localization algorithm. Experiments were conducted without any special hardware, any prior knowledge of the indoor layout or any offline calibration of the system.
Resumo:
This thesis covers a broad part of the field of computational photography, including video stabilization and image warping techniques, introductions to light field photography and the conversion of monocular images and videos into stereoscopic 3D content. We present a user assisted technique for stereoscopic 3D conversion from 2D images. Our approach exploits the geometric structure of perspective images including vanishing points. We allow a user to indicate lines, planes, and vanishing points in the input image, and directly employ these as guides of an image warp that produces a stereo image pair. Our method is most suitable for scenes with large scale structures such as buildings and is able to skip the step of constructing a depth map. Further, we propose a method to acquire 3D light fields using a hand-held camera, and describe several computational photography applications facilitated by our approach. As the input we take an image sequence from a camera translating along an approximately linear path with limited camera rotations. Users can acquire such data easily in a few seconds by moving a hand-held camera. We convert the input into a regularly sampled 3D light field by resampling and aligning them in the spatio-temporal domain. We also present a novel technique for high-quality disparity estimation from light fields. Finally, we show applications including digital refocusing and synthetic aperture blur, foreground removal, selective colorization, and others.
Resumo:
Indoor positioning has become an emerging research area because of huge commercial demands for location-based services in indoor environments. Channel State Information (CSI) as a fine-grained physical layer information has been recently proposed to achieve high positioning accuracy by using range-based methods, e.g., trilateration. In this work, we propose to fuse the CSI-based ranges and velocity estimated from inertial sensors by an enhanced particle filter to achieve highly accurate tracking. The algorithm relies on some enhanced ranging methods and further mitigates the remaining ranging errors by a weighting technique. Additionally, we provide an efficient method to estimate the velocity based on inertial sensors. The algorithms are designed in a network-based system, which uses rather cheap commercial devices as anchor nodes. We evaluate our system in a complex environment along three different moving paths. Our proposed tracking method can achieve 1:3m for mean accuracy and 2:2m for 90% accuracy, which is more accurate and stable than pedestrian dead reckoning and range-based positioning.
Resumo:
It is a challenge to measure the impact of releasing data to the public since the effects may not be directly linked to particular open data activities or substantial impact may only occur several years after publishing the data. This paper proposes a framework to assess the impact of releasing open data by applying the Social Return on Investment (SROI) approach. SROI was developed for organizations intended to generate social and environmental benefits thus fitting the purpose of most open data initiatives. We link the four steps of SROI (input, output, outcome, impact) with the 14 high-value data categories of the G8 Open Data Charter to create a matrix of open data examples, activities, and impacts in each of the data categories. This Impact Monitoring Framework helps data providers to navigate the impact space of open data laying out the conceptual basis for further research.
Resumo:
Quality data are not only relevant for successful Data Warehousing or Business Intelligence applications; they are also a precondition for efficient and effective use of Enterprise Resource Planning (ERP) systems. ERP professionals in all kinds of businesses are concerned with data quality issues, as a survey, conducted by the Institute of Information Systems at the University of Bern, has shown. This paper demonstrates, by using results of this survey, why data quality problems in modern ERP systems can occur and suggests how ERP researchers and practitioners can handle issues around the quality of data in an ERP software Environment.
Resumo:
Project justification is regarded as one of the major methodological deficits in Data Warehousing practice. As reasons for applying inappropriate methods, performing incomplete evaluations, or even entirely omitting justifications, the special nature of Data Warehousing benefits and the large portion of infrastructure-related activities are stated. In this paper, the economic justification of Data Warehousing projects is analyzed, and first results from a large academiaindustry collaboration project in the field of non-technical issues of Data Warehousing are presented. As conceptual foundations, the role of the Data Warehouse system in corporate application architectures is analyzed, and the specific properties of Data Warehousing projects are discussed. Based on an applicability analysis of traditional approaches to economic IT project justification, basic steps and responsibilities for the justification of Data Warehousing projects are derived.
Resumo:
The shift from host-centric to information-centric networking (ICN) promises seamless communication in mobile networks. However, most existing works either consider well-connected networks with high node density or introduce modifications to {ICN} message processing for delay-tolerant Networking (DTN). In this work, we present agent-based content retrieval, which provides information-centric {DTN} support as an application module without modifications to {ICN} message processing. This enables flexible interoperability in changing environments. If no content source can be found via wireless multi-hop routing, requesters may exploit the mobility of neighbor nodes (called agents) by delegating content retrieval to them. Agents that receive a delegation and move closer to content sources can retrieve data and return it back to requesters. We show that agent-based content retrieval may be even more efficient in scenarios where multi-hop communication is possible. Furthermore, we show that broadcast communication may not be necessarily the best option since dynamic unicast requests have little overhead and can better exploit short contact times between nodes (no broadcast delays required for duplicate suppression).
Resumo:
Indoor positioning has attracted considerable attention for decades due to the increasing demands for location based services. In the past years, although numerous methods have been proposed for indoor positioning, it is still challenging to find a convincing solution that combines high positioning accuracy and ease of deployment. Radio-based indoor positioning has emerged as a dominant method due to its ubiquitousness, especially for WiFi. RSSI (Received Signal Strength Indicator) has been investigated in the area of indoor positioning for decades. However, it is prone to multipath propagation and hence fingerprinting has become the most commonly used method for indoor positioning using RSSI. The drawback of fingerprinting is that it requires intensive labour efforts to calibrate the radio map prior to experiments, which makes the deployment of the positioning system very time consuming. Using time information as another way for radio-based indoor positioning is challenged by time synchronization among anchor nodes and timestamp accuracy. Besides radio-based positioning methods, intensive research has been conducted to make use of inertial sensors for indoor tracking due to the fast developments of smartphones. However, these methods are normally prone to accumulative errors and might not be available for some applications, such as passive positioning. This thesis focuses on network-based indoor positioning and tracking systems, mainly for passive positioning, which does not require the participation of targets in the positioning process. To achieve high positioning accuracy, we work on some information of radio signals from physical-layer processing, such as timestamps and channel information. The contributions in this thesis can be divided into two parts: time-based positioning and channel information based positioning. First, for time-based indoor positioning (especially for narrow-band signals), we address challenges for compensating synchronization offsets among anchor nodes, designing timestamps with high resolution, and developing accurate positioning methods. Second, we work on range-based positioning methods with channel information to passively locate and track WiFi targets. Targeting less efforts for deployment, we work on range-based methods, which require much less calibration efforts than fingerprinting. By designing some novel enhanced methods for both ranging and positioning (including trilateration for stationary targets and particle filter for mobile targets), we are able to locate WiFi targets with high accuracy solely relying on radio signals and our proposed enhanced particle filter significantly outperforms the other commonly used range-based positioning algorithms, e.g., a traditional particle filter, extended Kalman filter and trilateration algorithms. In addition to using radio signals for passive positioning, we propose a second enhanced particle filter for active positioning to fuse inertial sensor and channel information to track indoor targets, which achieves higher tracking accuracy than tracking methods solely relying on either radio signals or inertial sensors.