902 resultados para train traffic
Resumo:
An electrically tunable system for the control of optical pulse sequences is proposed and demonstrated. It is based on the use of an electrooptic modulator for periodic phase modulation followed by a dispersive device to obtain the temporal Talbot effect. The proposed configuration allows for repetition rate multiplication with different multiplication factors and with the simultaneous control of the pulse train envelope by simply changing the electrical signal driving the modulator. Simulated and experimental results for an input optical pulse train of 10 GHz are shown for different multiplication factors and envelope shapes.
Resumo:
En las últimas décadas el aumento de la velocidad y la disminución del peso de los vehículos ferroviarios de alta velocidad ha provocado que aumente su riesgo de vuelco. Además, las exigencias de los trazados de las líneas exige en ocasiones la construcción de viaductos muy altos situados en zonas expuestas a fuertes vientos. Esta combinación puede poner en peligro la seguridad de la circulación. En esta tesis doctoral se estudian los efectos dinámicos que aparecen en los vehículos ferroviarios cuando circulan sobre viaductos en presencia de vientos transversales. Para ello se han desarrollado e implementado una serie de modelos numéricos que permiten estudiar estos efectos de una forma realista y general. Los modelos desarrollados permiten analizar la interacción dinámica tridimensional tren-estructura, formulada mediante coordenadas absolutas en un sistema de referencia inercial, en un contexto de elementos _nitos no lineales. Mediante estos modelos se pueden estudiar de forma realista casos extremos como el vuelco o descarrilamiento de los vehículos. Han sido implementados en Abaqus, utilizando sus capacidades para resolver sistemas multi-cuerpo para el vehículo y elementos finitos para la estructura. La interacción entre el vehículo y la estructura se establece a través del contacto entre rueda y carril. Para ello, se han desarrollado una restricción, que permite establecer la relación cinemática entre el eje ferroviario y la vía, teniendo en cuenta los posibles defectos geométricos de la vía; y un modelo de contacto rueda-carril para establecer la interacción entre el vehículo y la estructura. Las principales características del modelo de contacto son: considera la geometría real de ambos cuerpos de forma tridimensional; permite resolver situaciones en las que el contacto entre rueda y carril se da en más de una zona a la vez; y permite utilizar distintas formulaciones para el cálculo de la tensión tangencial entre ambos cuerpos. Además, se ha desarrollado una metodología para determinar, a partir de formulaciones estocásticas, las historias temporales de cargas aerodinámicas debidas al viento turbulento en estructuras grandes y con pilas altas y flexibles. Esta metodología tiene cuenta la variabilidad espacial de la velocidad de viento, considerando la correlación entre los distintos puntos; considera las componentes de la velocidad del viento en tres dimensiones; y permite el cálculo de la velocidad de viento incidente sobre los vehículos que atraviesan la estructura. La metodología desarrollada en este trabajo ha sido implementada, validada y se ha aplicado a un caso concreto en el que se ha estudiado la respuesta de un tren de alta velocidad, similar al Siemens Velaro, circulando sobre el viaducto del río Ulla en presencia viento cruzado. En este estudio se ha analizado la seguridad y el confort de la circulación y la respuesta dinámica de la estructura cuando el tren cruza el viaducto. During the last decades the increase of the speed and the reduction of the weight of high-speed railway vehicles has led to a rise of the overturn risk. In addition, the design requests of the railway lines require some times the construction of very tall viaducts in strong wind areas. This combination may endanger the traffic safety. In this doctoral thesis the dynamic effects that appear in the railway vehicles when crossing viaducts under strong winds are studied. For this purpose it has been developed and implemented numerical models for studying these effects in a realistic and general way. The developed models allow to analyze the train-structure three-dimensional dynamic interaction, that is formulated by using absolute coordinates in an inertial reference frame within a non-linear finite element framework. By means of these models it is possible to study in a realistic way extreme situations such vehicle overturn or derailment. They have been implemented for Abaqus, by using its capabilities for solving multi-body systems for the vehicle and finite elements for the structure. The interaction between the vehicle and the structure is established through the wheel-rail contact. For this purpose, a constraint has been developed. It allows to establish the kinematic relationship between the railway wheelset and the track, taking into account the track irregularities. In addition, a wheel-rail contact model for establishing the interaction of the vehicle and the structure has been developed. The main features of the contact model are: it considers the real geometry During the last decades the increase of the speed and the reduction of the weight of high-peed railway vehicles has led to a rise of the overturn risk. In addition, the design requests of the railway lines require some times the construction of very tall viaducts in strong wind areas. This combination may endanger the traffic safety. In this doctoral thesis the dynamic effects that appear in the railway vehicles when crossing viaducts under strong winds are studied. For this purpose it has been developed and implemented numerical models for studying these effects in a realistic and general way. The developed models allow to analyze the train-structure three-dimensional dynamic interaction, that is formulated by using absolute coordinates in an inertial reference frame within a non-linear finite element framework. By means of these models it is possible to study in a realistic way extreme situations such vehicle overturn or derailment. They have been implemented for Abaqus, by using its capabilities for solving multi-body systems for the vehicle and finite elements for the structure. The interaction between the vehicle and the structure is established through the wheel-rail contact. For this purpose, a constraint has been developed. It allows to establish the kinematic relationship between the railway wheelset and the track, taking into account the track irregularities. In addition, a wheel-rail contact model for establishing the interaction of the vehicle and the structure has been developed. The main features of the contact model are: it considers the real geometry
Resumo:
An aerodynamic optimization of the ICE 2 high-speed train nose in term of front wind action sensitivity is carried out in this paper. The nose is parametrically defined by Be?zier Curves, and a three-dimensional representation of the nose is obtained using thirty one design variables. This implies a more complete parametrization, allowing the representation of a real model. In order to perform this study a genetic algorithm (GA) is used. Using a GA involves a large number of evaluations before finding such optimal. Hence it is proposed the use of metamodels or surrogate models to replace Navier-Stokes solver and speed up the optimization process. Adaptive sampling is considered to optimize surrogate model fitting and minimize computational cost when dealing with a very large number of design parameters. The paper introduces the feasi- bility of using GA in combination with metamodels for real high-speed train geometry optimization.
Resumo:
As it is defined in ATM 2000+ Strategy (Eurocontrol 2001), the mission of the Air Traffic Management (ATM) System is: “For all the phases of a flight, the ATM system should facilitate a safe, efficient, and expedite traffic flow, through the provision of adaptable ATM services that can be dimensioned in relation to the requirements of all the users and areas of the European air space. The ATM services should comply with the demand, be compatible, operate under uniform principles, respect the environment and satisfy the national security requirements.” The objective of this paper is to present a methodology designed to evaluate the status of the ATM system in terms of the relationship between the offered capacity and traffic demand, identifying weakness areas and proposing solutions. The first part of the methodology relates to the characterization and evaluation of the current system, while a second part proposes an approach to analyze the possible development limit. As part of the work, general criteria are established to define the framework in which the analysis and diagnostic methodology presented is placed. They are: the use of Air Traffic Control (ATC) sectors as analysis unit, the presence of network effects, the tactical focus, the relative character of the analysis, objectivity and a high level assessment that allows assumptions on the human and Communications, Navigation and Surveillance (CNS) elements, considered as the typical high density air traffic resources. The steps followed by the methodology start with the definition of indicators and metrics, like the nominal criticality or the nominal efficiency of a sector; scenario characterization where the necessary data is collected; network effects analysis to study the relations among the constitutive elements of the ATC system; diagnostic by means of the “System Status Diagram”; analytical study of the ATC system development limit; and finally, formulation of conclusions and proposal for improvement. This methodology was employed by Aena (Spanish Airports Manager and Air Navigation Service Provider) and INECO (Spanish Transport Engineering Company) in the analysis of the Spanish ATM System in the frame of the Spanish airspace capacity sustainability program, although it could be applied elsewhere.
Resumo:
The commercial centre VIALIA and the new railway station of the AVE (high speed train) in Malaga was inaugurated in November 2006, just on the place of the former railway station. The new railway station with an investment of 134,7 million Euros occupies a surface of 51.377 m2, five times the surface of the former station. The enclosure is the biggest intermodal and commercial centre of Spain which comprises a parking of 21.000 m2 for 1300 parking places, one commercial area and a hotel with a total extension constructed of approximately 100.000 m2. The spaces of leisure contain cinemas, shops, restaurants, bowling, gymnasium, swimming pool and zones of passenger's traffic.
Resumo:
Connexin-43 (Cx43), a gap junction protein involved in control of cell proliferation, differentiation and migration, has been suggested to have a role in hematopoiesis. Cx43 is highly expressed in osteoblasts and osteogenic progenitors (OB/P). To elucidate the biologic function of Cx43 in the hematopoietic microenvironment (HM) and its influence in hematopoietic stem cell (HSC) activity, we studied the hematopoietic function in an in vivo model of constitutive deficiency of Cx43 in OB/P. The deficiency of Cx43 in OB/P cells does not impair the steady state hematopoiesis, but disrupts the directional trafficking of HSC/progenitors (Ps) between the bone marrow (BM) and peripheral blood (PB). OB/P Cx43 is a crucial positive regulator of transstromal migration and homing of both HSCs and progenitors in an irradiated microenvironment. However, OB/P Cx43 deficiency in nonmyeloablated animals does not result in a homing defect but induces increased endosteal lodging and decreased mobilization of HSC/Ps associated with proliferation and expansion of Cxcl12-secreting mesenchymal/osteolineage cells in the BM HM in vivo. Cx43 controls the cellular content of the BM osteogenic microenvironment and is required for homing of HSC/Ps in myeloablated animals
Resumo:
- PV and HCPV compete in the utility market - PV cost reduction has been dramatic through volume - A complete off-the-shelf optics solution by Evonik and LPI - Based on the best-in-class design: The FK concentrator
Resumo:
Concession contracts in highways often include some kind of clauses (for example, a minimum traffic guarantee) that allow for better management of the business risks. The value of these clauses may be important and should be added to the total value of the concession. However, in these cases, traditional valuation techniques, like the NPV (net present value) of the project, are insufficient. An alternative methodology for the valuation of highway concession is one based on the real options approach. This methodology is generally built on the assumption of the evolution of traffic volume as a GBM (geometric Brownian motion), which is the hypothesis analyzed in this paper. First, a description of the methodology used for the analysis of the existence of unit roots (i.e., the hypothesis of non-stationarity) is provided. The Dickey-Fuller approach has been used, which is the most common test for this kind of analysis. Then this methodology is applied to perform a statistical analysis of traffic series in Spanish toll highways. For this purpose, data on the AADT (annual average daily traffic) on a set of highways have been used. The period of analysis is around thirty years in most cases. The main outcome of the research is that the hypothesis that traffic volume follows a GBM process in Spanish toll highways cannot be rejected. This result is robust, and therefore it can be used as a starting point for the application of the real options theory to assess toll highway concessions.
Resumo:
The dynamic effects of high-speed trains on viaducts are important issues for the design of the structures, as well as for determining safe running conditions of trains. In this work we start by reviewing the relevance of some basic moving load models for the dynamic action of vertical traffic loads. The study of lateral dynamics of running trains on bridges is of importance mainly for the safety of the traffic, and may be relevant for laterally compliant bridges. These studies require 3D coupled vehicle-bridge models and consideration of wheel to rail contact. We describe here a fully nonlinear coupled model, formulated in absolute coordinates and incorporated into a commercial finite element framework. An application example is presented for a vehicle subject to a strong wind gust traversing a bridge, showing the relevance of the nonlinear wheel-rail contact model as well as the interaction between bridge and vehicle.
Resumo:
First, this paper describes a future layered Air Traffic Management (ATM) system centred in the execution phase of flights. The layered ATM model is based on the work currently performed by SESAR [1] and takes into account the availability of accurate and updated flight information ?seen by all? across the European airspace. This shared information of each flight will be referred as Reference Business Trajectory (RBT). In the layered ATM system, exchanges of information will involve several actors (human or automatic), which will have varying time horizons, areas of responsibility and tasks. Second, the paper will identify the need to define the negotiation processes required to agree revisions to the RBT in the layered ATM system. Third, the final objective of the paper is to bring to the attention of researchers and engineers the communalities between multi-player games and Collaborative Decision Making processes (CDM) in a layered ATM system
Resumo:
Ponencia invitada sobre gestion de trafico aereo en el curso de verano de la UPM Research in Decision Support Systems for future Air Traffic Management
Resumo:
The commercial centre VIALIA and the new railway station of the AVE (high speed train) in Malaga was inaugurated in November 2006, just on the place of the former railway station. The new railway station with an investment of 134,7 million Euros occupies a surface of 51.377 m2, five times the surface of the former station. The enclosure is the biggest intermodal and commercial centre of Spain which comprises a parking of 21.000 m2 for 1300 parking places, one commercial area and a hotel with a total extension constructed of approximately 100.000 m2. The spaces of leisure contain cinemas, shops, restaurants, bowling, gymnasium, swimming pool and zones of passenger's traffic.
Resumo:
En esta comunicación se presenta el método para obtener modelos equivalentes eléctricos de materiales piezoeléctricos utilizados en entornos con tráfico vial para aplicaciones "Energy Harvesting". Los resultados experimentales se procesan para determinar la estructura topológica óptima y la tecnología de los elementos semiconductores utilizados en la etapa de entrada del sistema de alimentación "harvesting". Asimismo se presenta el modelo de la fuente de alimentación no regulada bajo demanda variable de corriente. Abstract: The method to obtain electrical equivalent models of piezoelectric materials used in energy harvesting road traffic environment is presented in this paper. The experimental results are processed in order to determine the optimal topological structure and technology of the semiconductor elements used in the input stage of the power harvesting system. The non regulated power supply model under variable current demand is also presented.
Resumo:
n recent years, the development of advanced driver assistance systems (ADAS) – mainly based on lidar and cameras – has considerably improved the safety of driving in urban environments. These systems provide warning signals for the driver in the case that any unexpected traffic circumstance is detected. The next step is to develop systems capable not only of warning the driver but also of taking over control of the car to avoid a potential collision. In the present communication, a system capable of autonomously avoiding collisions in traffic jam situations is presented. First, a perception system was developed for urban situations—in which not only vehicles have to be considered, but also pedestrians and other non-motor-vehicles (NMV). It comprises a differential global positioning system (DGPS) and wireless communication for vehicle detection, and an ultrasound sensor for NMV detection. Then, the vehicle's actuators – brake and throttle pedals – were modified to permit autonomous control. Finally, a fuzzy logic controller was implemented capable of analyzing the information provided by the perception system and of sending control commands to the vehicle's actuators so as to avoid accidents. The feasibility of the integrated system was tested by mounting it in a commercial vehicle, with the results being encouraging.
Resumo:
Underpasses are common in modern railway lines. Wildlife corridors and drainage conduits often fall into this category of partially buried structures. Their dynamic behaviour has received far less attention than that of other structures such as bridges, but their large number makes their study an interesting challenge in order to achieve safe and cost-effective structures. As ballast operations are a key life cycle cost, and excessive vibrations increase the need of ballast regulation in order to ensure track geometry, special attention is paid to accelerations, the values of which should be limited to avoid track instability according to Eurocode. In this paper, the data obtained during on site measurements on culverts belonging to a Spanish high-speed train line are presented. A set of six rectangular-shaped, closed-frame underpasses were monitored under traffic loading. Acceleration records at different points of the structures are presented and discussed. They reveal a non-uniform dynamic response of the roof-slab, with the highest observed values below the occupied track. Also, they indicate that the dynamic response is important up to frequencies higher than those usually observed for standard simply supported bridges. Finally, they are used to obtain a heuristic rule to estimate acceleration levels on the roof-slab.