1000 resultados para traduzione portoghese fonseca
Resumo:
Poly(ethylene glycol) decorated poly( methyl methacrylate) particles were synthesized by means of emulsion polymerization using poly(ethylene glycol) sorbitan monolaurate (Tween-20) as surfactant. PMMA/PEG particles presented mean diameter (195 +/- 15) nm, indicating narrow size distribution. The adsorption behavior of bovine serum albumin (BSA) and concanavalin A (ConA) onto PMMA/PEG particles was investigated by means of spectrophotometry. Adsorption isotherms obtained for BSA onto PMMA/PEG particles fitted well sigmoidal function, which is typical for multilayer adsorption. Con A adsorbed irreversibly onto PMMA/PEG particles. The efficiency of ConA covered particles to induce dengue virus quick agglutination was evaluated. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
In the present study, BALB/c mice were used to develop a model for the hepatic injury associated to dengue infection. Histological analysis after subcutaneous inoculation with a low viral dose of dengue-2 virus showed Kupffer cell hyperplasia and an increased inflammatory cellular infiltrate next to the bile ducts on days 5, 7 and 14 post-inoculation, mainly characterized by the presence of mononuclear cells. The liver mRNA transcription level of IL-1 beta was highest on the 5th day post-infection (p.i.) and decreased by the 21st day, TNF-alpha showed a peak of mRNA transcription after 14 days p.i. coinciding with the regression of cellular infiltrates and elevated expression of TGF-beta mRNA. Serum AST and ALT levels were slightly elevated at 7 and 14 days post-infection. Dengue-2 RNA levels were undetectable in the liver on any of the days following inoculation. Our observations suggest that, as it is true for humans, the animals undergo a transient and slight liver inflammation, probably due to local cytokine production and cellular infiltration in the liver. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
The interaction between dengue virus particles (DENV), sedimentation hemagglutinin particles (SHA), dengue virus envelope protein (Eprot), and solid surfaces was investigated by means of ellipsometry and atomic force microscopy (AFM). The surfaces chosen are bare Si/SiO(2) wafers and Si/SiO(2) wafers covered with concanavalin A (ConA), jacalin (Jac), polystyrene (PS), or poly(styrene sulfonate) (PSS) films. Adsorption experiments at pH 7.2 and pH 3 onto all surfaces revealed that (i) adsorption of DENV particles took place only onto ConA under pH 7.2, because of specific recognition between glycans on DENV surface and ConA binding site; (ii) DENV particles did not attach to any of the surfaces at pH 3, suggesting the presence of positive charges on DENV surface at this pH, which repel the positively charged lectin surfaces; (iii) SHA particles are positively charged at pH 7.2 and pH 3 because they adhered to negatively charged surfaces at pH 7.2 and repelled positively charged layers at pH 3; and (iv) SHA particles carry polar groups on the surface because they attached to silanol surfaces at pH 3 and avoided hydrophobic PS films at pH 3 and pH 7.2. The adsorption behavior of Eprot at pH 7.2 revealed affinity for ConA > Jac > PSS > PS approximate to bare Si/SiO(2) layers. These findings indicate that selectivity of the Eprot adsorption is higher when it is part of virus structure than when it is free in solution. The correlation between surface energy values determined by means of contact angle measurements and DENV, SHA, or Eprot adsorption behavior was used to understand the intermolecular forces at the interfaces. A direct correlation was not found because the contributions from surface energy were probably surpassed by specific contributions.
Resumo:
The fact that the diagnosis of infection with dengue virus is usually made by detecting IgM antibodies during the convalescent phase of the disease interferes with disease management and, consequently, with reducing mortality rates. This study evaluated the sensitivity and specificity of detection of NS1 in samples of patients suspected of acute dengue virus infection in Brazil. The results were used to institute treatment and the sensitivity and specificity of detection of NS1 were compared to the results of detection of IgM, virus isolation, and RT-PCR. Detection of NS1 yielded better results than RTPCR and virus isolation. When considering IgM detection and RT-PCR positive results as ""gold standards,"" the sensitivity and specificity of the NS1 assay were 95.9% and 81.1%, respectively. All patients enrolled in the study were treated promptly and had an uneventful course of the disease. The detection of NS1 provided better results than the diagnostic techniques used currently during the acute phase of disease (RT-PCR and virus isolation). Detection of NS1 is an important tool for the diagnosis of acute dengue infection, particularly in highly endemic areas, allowing for rapid treatment of patients and reduction of disease burden. J. Med. Virol. 82: 1400-1405, 2010. (C) 2010 Wiley-Liss, Inc.
Resumo:
Glutathione (GSH) has an important dual role in parasite-host relationship in Leishmania major infection. Our previous studies showed that both antioxidant systems, glutathione and trypanothione/trypanothione reductase, participate in the protection of Leishmania against the toxic effect of nitrogen-derived reactive species. On the other hand, GSH also is very important to the modulation of the effective immune response, inducting NO production and leishmanicidal activity of macrophages. In the present study, we investigated the role of host GSH during the course of L. major infection, analysing the size of footpad lesions and parasite load from mice treated with two GSH modulators, N-acethyl-L-cysteine (NAC) and buthionine sulphoximine (BSO). Resistant mice treated with BSO, which depletes GSH develop exacerbated lesions, but only harbour higher parasite load in their lesions 2 weeks post-infection. Although the NAC treatment does not affect the footpad lesions development in susceptible BALB/c mice, it significantly reduced the tissue parasitism in the lesions throughout the course of infection. Interestingly, the treatment with BSO did not change the course of L. major infection on susceptible mice when compared with nontreated mice. These results suggest that GSH is an important antioxidant modulator during anti-Leishmania immune response in vivo.
Resumo:
Recent in vitro data have suggested that the flavonoid quercetin (1) does not affect the functioning of neutrophils. Therefore, we evaluated in vivo and in vitro whether or not 1 affects neutrophil function, focusing on recruitment. The in vivo treatment with 1 inhibited in a dose-dependent manner the recruitment of neutrophils to the peritoneal cavity of mice induced by known chemotatic factors such as CXCL1, CXCL5, LTB(4), and fMLP. Further-more, 1 also inhibited in a concentration-dependent manner the chemoattraction of human neutrophils induced by CXCL8, LTB(4), and fMLP in a Boyden chamber. In vitro treatment with 1 did not affect human neutrophil surface expression of CXCR1, CXCR2, BLT1, or FLPR1, but rather reduced actin polymerization. These results suggest that 1 inhibits actin polymerization, hence, explaining the inhibition of neutrophil recruitment in vivo and in vitro and highlighting its possible usefulness to diminish excessive neutrophil migration during inflammation.
Resumo:
Quercetin (1) is known to have both antioxidant and antinociceptive effects. However, the mechanism involved in its antinociceptive effect is not fully elucidated. Cytokines and reactive oxygen species have been implicated in the cascade of events resulting in inflammatory pain. Therefore, we evaluated the antinociceptive mechanism of 1 focusing on the role of cytokines and Oxidative stress. Intraperitoneal and oral treatments with 1 dose-dependently inhibited inflammatory nociception induced by acetic acid and phenyl-p-benzoquinone and also the second phase of formalin- and carrageenin-induced mechanical hypernociception. Compound I also inhibited the hypernociception induced by cytokines (e.g., TNF alpha and CXCL1), but not by inflammatory mediators that directly sensitize the nociceptor such as PGE(2) and dopamine. On the other hand, 1 reduced carrageenin-induced IL-1 beta production as well as carrageenin-induced decrease of reduced glutathione (GSH) levels. These results suggest that I exerts its analgesic effect by inhibiting pro-nociceptive cytokine production and the oxidative imbalance mediation of inflammatory pain.
Resumo:
Conservation of natural populations and handling of breeding programs would benefit from the availability of molecular markers. Stingless bees are one of the most important pollinators in several ecosystems. Thus, seventeen microsatellite markers were developed from an enriched genomic library of Nannotrigona testaceicornis. They were characterized using 50 samples. The expected and observed heterozygosities ranged from 0.59 to 0.89 and from 0.39 to 0.79, respectively. These markers will contribute to advance researches on the genetic conservation, characterization and preservation of the Brazilian native bees.
Resumo:
The objective of this article was to estimate quantitative differences for GAPDH transcripts and poly(A) mRNA: (i) between oocytes collected from cumulus-oocyte complexes (COCs) qualified morphologically as grades A and B; (ii) between grade A oocytes before and after in vitro maturation (IVM); and (iii) among in vitro-produced embryos at different developmental stages. To achieve this objective a new approach was developed to estimate differences between poly(A) mRNA when using small samples. The approach consisted of full-length cDNA amplification (acDNA) monitored by real-time PCR, in which the cDNA from half of an oocyte or embryo was used as a template. The GAPDH gene was amplified as a reverse transcription control and samples that were not positive for GAPDH transcripts were discarded. The fold differences between two samples were estimated using delta Ct and statistical analysis and were obtained using the pairwise fixed reallocation randomization test. It was found that the oocytes recovered from grade B COCs had quantitatively less poly(A) mRNA (p < 0.01) transcripts compared with grade A COCs (1 arbitrary unit expression rate). In the comparison with immature oocytes (I arbitrary unit expression rate), the quantity of poly(A) mRNA did not change during IVM, but declined following IVF and varied with embryo culture (p < 0.05). Amplification of cDNA by real-time PCR was an efficient method to estimate differences in the amount of poly(A) mRNA between oocytes and embryos. The results obtained from individual oocytes suggested an association between poly(A) mRNA abundance and different morphological qualities of oocytes from COCs. In addition, a poly(A) mRNA profile was characterized from oocytes undergoing IVM, fertilization and blastocyst heating.
Resumo:
SETTING: Tuberculosis (TB) drug resistance survey in six hospitals in Rio de Janeiro, Brazil. OBJECTIVE: To estimate resistance to at least one drug (DR) and multidrug resistance (MDR) and identify associated factors. DESIGN: One-year cross-sectional survey. Hospitals were included as a convenience sample. RESULTS: Of 595 patients investigated, 156 (26.2%) had previously undergone anti-tuberculosis treatment, 433 (72.8%) were not previously treated and information on the remaining 6 was not available. Overall, DR and MDR rates were high, at respectively 102 (17.1%, 95%CI 14.3-20.5) and 44 (7.4%, 95%CI 5.5-9.9) cases. Among individuals not previously treated, 17 had MDR (3.9%, 95%CI 2.4-6.3) and diagnosis in a TB reference hospital was independently associated with MDR (prevalence ratio [PR] 3.3, 95%CI 1.2-8.7) after multivariate analysis. Among previously treated individuals, 27 had MDR (17.3%, 95%CI 11.7-24.2). MDR-TB was independently associated with diagnosis in a TB reference hospital (PR 3.6, 95%CI 1.5-8.7), male sex (PR 2.3,95%CI 1.2-4.4) and dyspnoea (PR 0.3, 95%CI 0.1-0.7). CONCLUSION: We found high levels of DR- and MDR-TB. Our study design did not permit us to determine the contribution of community versus nosocomial transmission. Further studies are needed to establish this. Nevertheless, hospitals should be recognised as a potential source of transmission of resistant TB strains and urgent measures to avoid nosocomial TB transmission should be taken.
Resumo:
Rocio virus (ROCV) is a flavivirus, probably transmitted by Culex mosquitoes and maintained in nature as a zoonosis of wild birds. Rocio virus caused a human epidemic of severe encephalitis that lasted from 1973 to 1980 in the Ribeira valley, in the southeastern coast of Brazil. After this outbreak, serologic evidence of ROCV circulation has been reported and public health authorities are concerned about a return of ROCV outbreaks in Brazil. We show here a study on the pathogenesis and the physiopathology of ROCV disease in the central nervous system of a Balb/C young adult mice experimental model. The animals were intraperitoneally infected by ROCV and followed from 0 to 9 days after infection, when all of them died. Nervous tissue samples were collected from infected animals for immunohistochemistry and molecular biology analysis. We observed the virus in the central nervous system, the inflammatory changes induced by Th1 and Th2 cytokines, and the final irreversible damage of nervous tissues by neuronal degeneration and apoptosis. These findings can help to better understand the pathogenesis and physiopathology of the human meningoencephalomyelitis by ROCV and other flaviviruses.
Resumo:
Background and purpose: Calendula officinalis flowers have long been employed time in folk therapy, and more than 35 properties have been attributed to decoctions and tinctures from the flowers. The main uses are as remedies for burns (including sunburns), bruises and cutaneous and internal inflammatory diseases of several origins. The recommended doses are a function both of the type and severity of the condition to be treated and the individual condition of each patient. Therefore, the present study investigated the potential use of Calendula officinalis extract to prevent UV irradiation-induced oxidative stress in skin. Methods: Firstly, the physico-chemical composition of marigold extract(ME) (hydroalcoholic extract)was assessed and the in vitro antioxidant efficacy was determined using different methodologies. Secondly, the cytotoxicity was evaluated in L929 and HepG2 cells with the MTT assay. Finally, the in vivo protective effect of ME against UVB-induced oxidative stress in the skin of hairless mice was evaluated by determining reduced glutathione (GSH) levels and monitoring the secretion/activity of metalloproteinases. Results and conclusions: The polyphenol, flavonoid, rutin and narcissin contents found in ME were 28.6 mg/g, 18.8 mg/g, 1.6 mg/g and 12.2 mg/g, respectively and evaluation of the in vitro antioxidant activity demonstrated a dose-dependent effect of ME against different radicals. Cytoxicity experiments demonstrated that ME was not cytotoxic for L929 and HepG2 cells at concentrations less than or equal to of 15 mg/mL However, concentrations greater than or equal to 30 mg/mL, toxic effects were observed. Finally, oral treatment of hairless mice with 150 and 300 mg/kg of ME maintained GSH levels close to non-irradiated control mice. In addition, this extract affects the activity/secretion of matrix metalloproteinases 2 and 9 (MMP-2 and -9) stimulated by exposure to UVB irradiation. However, additional studies are required to have a complete understanding of the protective effects of ME for skin. (C) 2009 Elsevier Ireland Ltd. All rights reserved.
Resumo:
HIV-1-infected patients frequently have opportunistic esophageal infections which, when associated with severe immunodeficiency, can be attributed to unusual pathogens. The clinical presentation of several esophageal diseases is similar and the best method for a specific diagnosis of these patients has not been well defined. To evaluate the role of the polymerase chain reaction (PCR) in the etiologic definition of esophageal ulcers in HIV-1-infected patients, 96 esophageal biopsies from 79 HIV-1-infected patients were processed by PCR using specific primers for cytomegalovirus (CMV), herpes virus (HSV), human papilloma virus (HPV), HIV-1, Mycobacterium tuberculosis, Mycobacterium avium, Mycobacterium intracellulare, Treponema pallidum, and Haemophilus ducreyi. The PCR results were compared to the histopathologic results. Seventy-nine patients were studied (mean age: 34 years; 62% men; median CD4 + T cell = 103.59 cells/mu l (range 1-795.2 cells/mu l). The most common endoscopic findings were as follows: esophageal candidiasis (37.1%), esophageal ulcers (24.7%), esophagitis (11.2%), and lugol-negative areas (10.1%). The histopathologic findings in the esophageal ulcers (22 biopsies) were non-specific inflammation (31.8%), HSV (36.4%), Candida (13.6%), CMV (13.6%), or HPV disease (4.5%). In the esophageal ulcer biopsies, the PCR results were negative in 27.6% of cases, and positive for HIV (65.5%), CMV (31%), HPV (20.7%), HSV (10.3%), and H. ducreyi (6.9%). The histopathologic examination did not identify a pathogen or identified only Candida in 15 biopsies of esophageal ulcers. PCR was positive in ten (66.7%) and negative in five (33.3%) of these biopsies (idiopathic ulcers). PCR detected: HIV (53.3%), CMV (20%), HPV (13.3%), and H. ducreyi (6,7%). PCR detected more etiologic agents in esophageal ulcers than histopathology and was able to detect unusual pathogens. On the other hand, sometimes more than one pathogen was detected in the esophageal ulcers, making it difficult to reach an accurate diagnosis. This finding indicates the need for more studies to evaluate the benefit of this method in the routine evaluation of esophageal ulcer biopsies in HIV-1-infected patients.
Resumo:
In an effort to develop a suitable DNA vaccine candidate for dengue, using dengue-3 virus (DENV-3) as a prototype, the genes coding for premembrane (prM) and envelope proteins (E) were inserted into an expression plasmid. After selecting recombinant clones containing prM/E genes, protein expression in the cell monolayer was detected by indirect immunofluorescence and immunoprecipitation assays. After selecting three vaccine candidates (pVAC1DEN3, pVAC2DEN3 and pVAC3DEN3), they were analyzed in vivo to determine their ability to induce a DENV-3-specific immune response. After three immunizations, the spleens of the immunized animals were isolated, and the cells were cultivated to measure cytokine levels by ELISA and used for lymphoproliferation assays. All of the animals inoculated with the recombinant clones induced neutralizing antibodies against DENV-3 and produced a T cell proliferation response after specific stimuli. Immunized and control mice were challenged with a lethal dose of DENV-3 and observed in order to assess their survival capability. The groups that presented the best survival rate after the challenge were the animals vaccinated with the pVAC3DEN3 clones, with an 80% survival rate. Thus, these data show that we have manufactured a vaccine candidate for DENV-3 that is able to induce a specific immune response and protects mice against a lethal challenge.