895 resultados para strength and function


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Introduction/Purpose: The role of impact loading activity on bone mass is well established; however, there are little data on the effects of exercise on bone geometry and indices of bone strength. The primary purpose of this study was to compare indices of bone strength at the proximal femur (PF) between elite premenarcheal gymnasts (N = 30) and age-matched controls (N = 30). Methods: Structural properties of the proximal femur were derived from the hip analyses program and included measurement of subperiosteal width, endosteal diameter, cross-sectional area, bone mineral density, cross-section moment of inertia (CSMI), and section modulus (Z). These parameters were measured for two regions of the PF: the narrow neck (NN), and the shaft (S). In addition, a strength index (S-SI) was calculated at the shaft by dividing the Z at the shaft by the femur length. A secondary purpose was to compare bone mineral content (BMC) values at the total body, lumbar spine, and three sites at the PF (neck, trochanter, and total) between the groups. All dependent values were compared adjusting for height and weight using an ANCOVA procedure and for relative lean body mass post hoc. Results: The gymnasts had significantly greater size-adjusted strength indices (CSMI, Z, and SI) at the NN and S. Gymnasts also had significantly greater size-adjusted BMC at all sites investigated. However, these differences disappeared when adjusted for relative lean body mass. Conclusion: When adjusted for body size, gymnasts had significantly greater indices of both axial strength and bending strength at the NN region of the PF and S, as well as a greater bone SI at the femoral shaft. These differences may be related to greater relative lean body mass attained in gymnastics training.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The contributions of the concrete slab and composite action to the vertical shear strength of continuous steel-concrete composite beams are ignored in current design codes, which result in conservative designs. This paper investigates the ultimate strength of continuous composite beams in combined bending and shear by using the finite element analysis method. A three-dimensional finite element model has been developed to account for the geometric and material nonlinear behaviour of continuous composite beams. The finite element model is verified by experimental results and then used to study the effects of the concrete slab and shear connection on the vertical shear strength. The moment-shear interaction strength of continuous composite beams is also investigated by varying the moment/ shear ratio. It is shown that the concrete slab and composite action significantly increase the ultimate strength of continuous composite beams. Based on numerical results, design models are proposed for the vertical shear strength and moment-shear interaction of continuous composite beams. The proposed design models, which incorporates the effects of the concrete slab, composite action, stud pullout failure and web shear buckling, are compared with experimental results with good agreement. (C) 2003 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The leaching of N fertilisers has led to the formation of nitrate (NO3) accumulations in deep subsoils (>5 m depth) of the Johnstone River catchment. This paper outlines the chemical mechanism by which these NO3 accumulations are formed and maintained. This was achieved via a series of column experiments designed to investigate NO3 leaching in relation to the soil charge chemistry and the competition of anions for exchange sites. The presence of variable charge minerals has led to the formation positive surface charge within these profiles. An increase in the soil solution ionic strength accompanying the fertiliser leaching front acts to increase the positive (and negative) charge density, thus providing adsorption sites for NO3. A decrease in the soil solution ionic strength occurs after the fertiliser pulse moves past a point in the profile, due to dilution with incoming rainwater. Nitrate is then released from the exchange back into the soil solution, thus buffering the decrease in the soil solution ionic strength. Since NO3 was adsorbed throughout the profile in this experiment it does not effectively explain the situation occurring in the field. Previous observations of the sulfate (SO4) profile distribution indicated that large SO4 accumulations in the upper profile may influence the NO3 distribution through competition for adsorption sites. A subsequent experiment investigating the effect of SO4 additions on NO3 leaching showed that NO3 adsorption was minimal in the upper profile. Adsorption of NO3 did occur, though only in the region of the profile where SO4 occupancy was low, i.e. in the lower profile. Therefore, the formation of the NO3 accumulations is dependent on the variable charge mineralogy, the variation of charge density with soil solution ionic strength, and the effects of SO4 competition for adsorption sites.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Resistance training has been shown to reliably and substantially enhance muscle function in older adults and these improvements can be accompanied by improved functional performance. Training variables should be manipulated to enhance muscle strength and minimize injury risks in this population.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The black tern (Anous minutus) uses a semi-precocial growth strategy. Terrestrial locomotor capacity occurs soon after hatching, but pectoral limb development is delayed and flight is not possible until about post-hatching day 50. A growth series (hatchlings to fledglings) was used to explore how limb musculoskeletal development varied with body mass. In the pelvic limb, bone lengths scaled isometrically or with negative allometry. Gastrocnemius muscle mass and the failure load and stiffness of the tibiotarsus scaled isometrically. In the pectoral limb, pectoralis and supracoracoideus muscle masses increased with strong positive allometry that was mirrored by increases in wing bone strength and stiffness. Bending strength (σult) and modulus (E) remained fairly constant throughout development to fledging for all limb bones. The moment of inertia (I) scaled with negative allometry for the tibiotarsus and with strong positive allometry in the wing bones. Differences in σult and E of the tibiotarsus between pre-fledged chicks and adults was due, primarily, to increases in bone density rather than increases in the moment of inertia of the skeletal elements, whereas σult of wing bones was a function of increases in both bone density and I. Early development of functional pelvic limbs in tree-nesting birds is relatively unusual, and presumably reflects a familial trait that does not appear to compromise breeding success in this species.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mangrove ecosystems can be either nitrogen (N) or phosphorus (P) limited and are therefore vulnerable to nutrient pollution. Nutrient enrichment with either N or P may have differing effects on ecosystems because of underlying differences in plant physiological responses to these nutrients in either N- or P-limited settings. Using a common mangrove species, Avicennia germinans, in sites where growth was either N or P limited, we investigated differing physiological responses to N and P limitation and fertilization. We tested the hypothesis that water uptake and transport, and hydraulic architecture, were the main processes limiting productivity at the P-limited site, but that this was not the case at the N-limited site. We found that plants at the P-deficient site had lower leaf water potential, stomatal conductance and photosynthetic carbon-assimilation rates, and less conductive xylem, than those at the N-limited site. These differences were greatly reduced with P fertilization at the P-limited site. By contrast, fertilization with N at the N-limited site had little effect on either photosynthetic or hydraulic traits. We conclude that growth in N- and P-limited sites differentially affect the hydraulic pathways of mangroves. Plants experiencing P limitation appear to be water deficient and undergo more pronounced changes in structure and function with relief of nutrient deficiency than those in N-limited ecosystems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Loading of the femoral neck (FN) is dominated by bending and compressive stresses. We hypothesize that adaptation of the FN to physical activity would be manifested in the cross-sectional area (CSA) and section modulus (Z) of bone, indices of axial and bending strength, respectively. We investigated the influence of physical activity on bone strength during adolescence using 7 years of longitudinal data from 109 boys and 121 girls from the Saskatchewan Paediatric Bone and Mineral Accrual Study (PBMAS). Physical activity data (PAC-Q physical activity inventory) and anthropometric measurements were taken every 6 months and DXA bone scans were measured annually (Hologic QDR2000, array mode). We applied hip structural analysis to derive strength and geometric indices of the femoral neck using DXA scans. To control for maturation, we determined a biological maturity age defined as years from age at peak height velocity (APHV). To account for the repeated measures within individual nature of longitudinal data, multilevel random effects regression analyses were used to analyze the data. When biological maturity age and body size (height and weight) were controlled, in both boys and girls, physical activity was a significant positive independent predictor of CSA and Z of the narrow region of the femoral neck (P < 0.05). There was no independent effect of physical activity on the subperiosteal width of the femoral neck. When leg length and leg lean mass were introduced into the random effects models to control for size and muscle mass of the leg (instead of height and weight), all significant effects of physical activity disappeared. Even among adolescents engaged in normal levels of physical activity, the statistically significant relationship between physical activity and indices of bone strength demonstrate that modifiable lifestyle factors like exercise play an important role in optimizing bone strength during the growing years. Physical activity differences were explained by the interdependence between activity and lean mass considerations. Physical activity is important for optimal development of bone strength. (c) 2005 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cyclotides are a fascinating family of plant-derived peptides characterized by their head-to-tail cyclized backbone and knotted arrangement of three disulfide bonds. This conserved structural architecture, termed the CCK (cyclic cystine knot), is responsible for their exceptional resistance to thermal, chemical and enzymatic degradation. Cyclotides have a variety of biological activities, but their insecticidal activities suggest that their primary function is in plant defence. In the present study, we determined the cyclotide content of the sweet violet Viola odorata, a member of the Violaceae family. We identified 30 cyclotides from the aerial parts and roots of this plant, 13 of which are novel sequences. The new sequences provide information about the natural diversity of cyclotides and the role of particular residues in defining structure and function. As many of the biological activities of cyclotides appear to be associated with membrane interactions, we used haemolytic activity as a marker of bioactivity for a selection of the new cyclotides. The new cyclotides were tested for their ability to resist proteolysis by a range of enzymes and, in common with other cyclotides, were completely resistant to trypsin, pepsin and thermolysin. The results show that while biological activity varies with the sequence, the proteolytic stability of the framework does not, and appears to be an inherent feature of the cyclotide framework. The structure of one of the new cyclotides, cycloviolacin O14, was determined and shown to contain the CCK motif. This study confirms that cyclotides may be regarded as a natural combinatorial template that displays a variety of peptide epitopes most likely targeted to a range of plant pests and pathogens.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Cyclosporin A (CsA)-treated renal transplant recipients (RTR) exhibit relative hyperhomocystinemia and vascular dysfunction. Folate supplementation lowers homocysteine and has been shown to improve vascular function in healthy subjects and patients with coronary artery disease. The aim of this study was to assess the effects of 3 months of folate supplementation (5 mg/day) on vascular function and structure in RTR. Methods: A double-blind, placebo-controlled crossover study was conducted in 10 CsA-treated RTR. Vascular structure was measured as carotid artery intima media thickness (IMT) and function was assessed as changes in brachial artery diameter during reactive hyperemia (RE) and in response to glyceryl trinitrate (GTN). Function data were analyzed as absolute and percent change from baseline and area under the diameter/time curve. Blood samples were collected before and after supplementation and analyzed for total plasma homocysteine, folate, vitamin B-12 and asymmetric dimethyl arginine (ADMA) in addition to regular measures of hemoglobin, hematocrit, mean corpuscular volume (MCV) and serum creatinine. Results: Folate supplementation significantly increased plasma folate by 687% (p < 0.005) and decreased homocysteine by 37% (p < 0.05) with no changes (p > 0.05) in vitamin B 12 or ADMA. There were no significant (p > 0.05) changes in vascular structure or function during the placebo or the folate supplementation phases; IMT; placebo pre mean +/- SD, 0.52 +/- 0.12, post 0.50 +/- 0.11; folate pre 0.55 +/- 0.17, post 0.49 +/- 10.20 mm 5% change in brachial artery diameter (RH, placebo pre 10 +/- 8, post 6 +/- 5; folate pre 9 +/- 7, post 7 +/- 5; GTN, placebo pre 18 +/- 10, post 17 +/- 9, folate pre 16 +/- 9, post-supplementation 18 +/- 8). Conclusion: Three months of folate supplementation decreases plasma homocysteine but has no effect on endothelial function or carotid artery IMT in RTR.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose: To examine the effect of progressive resistance training on muscle function, functional performance, balance, body composition, and muscle thickness in men receiving androgen deprivation for prostate cancer. Methods: Ten men aged 59-82 yr on androgen deprivation for localized prostate cancer undertook progressive resistance training for 20 wk at 6- to 12-repetition maximum (RM) for 12 upper- and lower-body exercises in a university exercise rehabilitation clinic. Outcome measures included muscle strength and muscle endurance for the upper and lower body, functional performance (repeated chair rise, usual and fast 6-m walk, 6-m backwards walk, stair climb, and 400-m walk time), and balance by sensory organization test. Body composition was measured by dual-energy x-ray absorptiometry and muscle thickness at four anatomical sites by B-mode ultrasound. Blood samples were assessed for prostate specific antigen (PSA), testosterone, growth hormone (GH), cortisol, and hemoglobin. Results: Muscle strength (chest press, 40.5%; seated row, 41.9%; leg press, 96.3%; P < 0.001) and muscle endurance (chest press, 114.9%; leg press, 167.1%; P < 0.001) increased significantly after training. Significant improvement (P < 0.05) occurred in the 6-m usual walk (14.1%), 6-m backwards walk (22.3%), chair rise (26.8%), stair climbing (10.4%), 400-m walk (7.4%), and balance (7.8%). Muscle thickness increased (P < 0.05) by 15.7% at the quadriceps site. Whole-body lean mass was preserved with no change in fat mass. There were no significant changes in PSA, testosterone, GH, cortisol, or hemoglobin. Conclusions: Progressive resistance exercise has beneficial effects on muscle strength, functional performance and balance in older men receiving androgen deprivation for prostate cancer and should be considered to preserve body composition and reduce treatment side effects.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective-To determine effects of early intensive postoperative physiotherapy on limb function in dogs after tibial plateau leveling osteotomy (TPLO) for deficiency of the cranial cruciate ligament (CCL). Animals-8 adult dogs with CCL deficiency. Procedure-After TPLO, dogs underwent a physiotherapy program 3 times/wk (physiotherapy group; n = 4) or a walking program (home-exercise group; 4). All dogs were evaluated before surgery, 1 and 10 days after surgery, and 3 and 6 weeks after surgery. Thigh circumference (TC), stifle joint flexion and extension range of motion (ROM), lameness, and weight-bearing scores were recorded. Results-Before surgery, CCL-deficient limbs had significantly reduced TC and reduced flexion and extension ROMs, compared with values for the contralateral control limb. Six weeks after TPLO, the physiotherapy group had significantly larger TC than the home-exercise group, with the difference no longer evident between the affected and nonaffected limbs. Extension and flexion ROMs were significantly greater in the physiotherapy group, compared with values for the home-exercise group, 3 and 6 weeks after surgery. Six weeks after surgery, the difference in flexion and extension ROMs was no longer evident between the affected and nonaffected limbs in the physiotherapy group. Both groups had improvements for lameness and weight-bearing scores over time, but no difference was found between the 2 groups. Conclusions and Clinical Relevance-After TPLO in CCL-deficient dogs, early physiotherapy intervention should be considered as part of the postoperative management to prevent muscle atrophy, build muscle mass and strength, and increase stifle joint flexion and extension ROMs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This multi-modal investigation aimed to refine analytic tools including proton magnetic resonance spectroscopy (1H-MRS) and fatty acid gas chromatography-mass spectrometry (GC-MS) analysis, for use with adult and paediatric populations, to investigate potential biochemical underpinnings of cognition (Chapter 1). Essential fatty acids (EFAs) are vital for the normal development and function of neural cells. There is increasing evidence of behavioural impairments arising from dietary deprivation of EFAs and their long-chain fatty acid metabolites (Chapter 2). Paediatric liver disease was used as a deficiency model to examine the relationships between EFA status and cognitive outcomes. Age-appropriate Wechsler assessments measured Full-scale IQ (FSIQ) and Information Processing Speed (IPS) in clinical and healthy cohorts; GC-MS quantified surrogate markers of EFA status in erythrocyte membranes; and 1H-MRS quantified neurometabolite markers of neuronal viability and function in cortical tissue (Chapter 3). Post-transplant children with early-onset liver disease demonstrated specific deficits in IPS compared to age-matched acute liver failure transplant patients and sibling controls, suggesting that the time-course of the illness is a key factor (Chapter 4). No signs of EFA deficiency were observed in the clinical cohort, suggesting that EFA metabolism was not significantly impacted by liver disease. A strong, negative correlation was observed between omega-6 fatty acids and FSIQ, independent of disease diagnosis (Chapter 5). In a study of healthy adults, effect sizes for the relationship between 1H-MRS- detectable neurometabolites and cognition fell within the range of previous work, but were not statistically significant. Based on these findings, recommendations are made emphasising the need for hypothesis-driven enquiry and greater subtlety of data analysis (Chapter 6). Consistency of metabolite values between paediatric clinical cohorts and controls indicate normal neurodevelopment, but the lack of normative, age-matched data makes it difficult to assess the true strength of liver disease-associated metabolite changes (Chapter 7). Converging methods offer a challenging but promising and novel approach to exploring brain-behaviour relationships from micro- to macroscopic levels of analysis (Chapter 8).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The infiltration and persistence of hematopoietic immune cells within the rheumatoid arthritis (RA) joint results in elevated levels of pro-inflammatory cytokines, increased reactive oxygen (ROS) and -nitrogen (RNS) species generation, that feeds a continuous self-perpetuating cycle of inflammation and destruction. Meanwhile, the controlled production of ROS is required for signaling within the normal physiological reaction to perceived "foreign matter" and for effective apoptosis. This review focuses on the signaling pathways responsible for the induction of the normal immune response and the contribution of ROS to this process. Evidence for defects in the ability of immune cells in RA to regulate the generation of ROS and the consequence for their immune function and for RA progression is considered. As the hypercellularity of the rheumatoid joint and the associated persistence of hematopoietic cells within the rheumatoid joint are symptomatic of unresponsiveness to apoptotic stimuli, the role of apoptotic signaling proteins (specifically Bcl-2 family members and the tumor suppressor p53) as regulators of ROS generation and apoptosis are considered, evaluating evidence for their aberrant expression and function in RA. We postulate that ROS generation is required for effective therapeutic intervention.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The preparation and characterisation of novel biodegradable polymer fibres for application in tissue engineering and drug delivery are reported. Poly(e-caprolactone) (PCL) fibres were produced by wet spinning from solutions in acetone under low shear (gravity flow) conditions. The tensile strength and stiffness of as-spun fibres were highly dependent on the concentration of the spinning solution. Use of a 6% w/v solution resulted in fibres having strength and stiffness of 1.8 MPa and 0.01 GPa respectively, whereas these values increased to 9.9 MPa and 0.1 GPa when fibres were produced from 20% w/v solutions. Cold drawing to an extension of 500% resulted in further increases in fibre strength (up to 50 MPa) and stiffness (0.3 GPa). Hot drawing to 500% further increased the fibre strength (up to 81 MPa) and stiffness (0.5 GPa). The surface morphology of as-spun fibres was modified, to yield a directional grooved pattern by drying in contact with a mandrel having a machined topography characterised by a peak-peak separation of 91 mm and a peak height of 30 mm. Differential scanning calorimetery (DSC) analysis of as-spun fibres revealed the characteristic melting point of PCL at around 58°C and a % crystallinity of approximately 60%. The biocompatibility of as-spun fibres was assessed using cell culture. The number of attached 3T3 Swiss mouse fibroblasts, C2C12 mouse myoblasts and human umbilical vein endothelial cells (HUVECs) on as-spun, 500% cold drawn, and gelatin coated PCL fibres were observed. The results showed that the fibres promoted cell proliferation for 9 days in cell culture and was slightly lower than on tissue culture plastic. The morphology of all cell lines was assessed on the various PCL fibres using scanning electron microscopy. The cell function of HUVECs growing on the as-spun PCL fibres was evaluated. The ability HUVECs to induce an immune response when stimulated with lipopolysaccaride (LPS) and thereby to increase the amount of cell surface receptors was assessed by flow cytometry and reverse transcription-polymerase chain reaction (RT-PCR). The results showed that PCL fibres did not inhibit this function compared to TCP. As-spun PCL fibres were loaded with 1 % ovine albumin (OVA) powder, 1% OVA nanoparticles and 5% OVA nanoparticles by weight and the protein release was assessed in vitro. PCL fibres loaded with 1 % OVA powder released 70%, 1% OVA nanoparticle released 60% and the 5% OVA nanoparticle released 25% of their protein content over 28 days. These release figures did not alter when the fibres were subjected to lipase enzymatic degradation. The OVA released was examined for structural integrity by SDS-PAGE. This showed that the protein molecular weight was not altered after incorporation into the fibres. The bioactivity of progesterone was assessed following incorporation into PCL fibres. Results showed that the progesterone released had a pronounced effect on MCF-7 breast epithelial cells, inhibiting their proliferation. The PCL fibres display high fibre compliance, a potential for controlling the fibre surface architecture to promote contact guidance effects, favorable proliferation rate of fibroblasts, myoblasts and HUVECs and the ability to release pharmaceuticals. These properties recommended their use for 3-D scaffold production in soft tissue engineering and the fibres could also be exploited for controlled presentation and release of biopharmaceuticals such as growth factors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report an efficient power tapping device working in near infra-red (800 nm) wavelength region based on UV-in- scribed 45° tilted fiber grating (45°-TFG) structure. Five 45°-TFGs were UV-inscribed in hydrogenated PS750 fiber using a custom-designed phase mask with different grating lengths of 3 mm, 5 mm, 9 mm, 12 mm and 15 mm, showing polarization dependent losses (PDLs) of 1 dB, 3 dB, 7 dB, 10 dB and 13 dB, respectively. The power side-tapping efficiency is clearly depending on the grating strength. It has been identified that the power tapping efficiency increases with the grating strength and deceases along the grating length. The side-tapped power profile has also been examined in azimuthal direction, showing a near-Gaussian distribution. These experimental results clearly demonstrated that 45°- TFGs may be used as in-fiber power tapping devices for applications requiring in-line signal monitoring.