813 resultados para science for non-science students
Resumo:
Most of creativity in the digital world passes unnoticed by the industry practices and policies, and it isn't taken into account in the cultural and economic strategies of the creative industries. We should find ways to catalyze this creative production, showing how the user's contribution may contribute to social learning, cultural and economic advancement. To that effect, we must know what is an open creative system and how it works. Based on this diagnosis, the author that interdisciplinarity is urgent and there is also a need for a science of culture. What is at stake is a strategy of integrated development, as regards the upcoming innovation in its complex, productive and learning aspects.
Resumo:
In the university education arena, it is becoming apparent that traditional methods of conducting classes are not the most effective ways to achieve desired learning outcomes. The traditional class/method involves the instructor verbalizing information for passive, note-taking students who are assumed to be empty receptacles waiting to be filled with knowledge. This method is limited in its effectiveness, as the flow of information is usually only in one direction. Furthermore, “It has been demonstrated that students in many cases can recite and apply formulas in numerical problems, but the actual meaning and understanding of the concept behind the formula is not acquired (Crouch & Mazur)”. It is apparent that memorization is the main technique present in this approach. A more effective method of teaching involves increasing the students’ level of activity during, and hence their involvement in the learning process. This technique stimulates self- learning and assists in keeping these students’ levels of concentration more uniform. In this work, I am therefore interested in studying the influence of a particular TLA on students’ learning-outcomes. I want to foster high-level understanding and critical thinking skills using active learning (Silberman, 1996) techniques. The TLA in question aims to promote self-study by students and to expose them to a situation where their learning-outcomes can be tested. The motivation behind this activity is based on studies which suggest that some sensory modalities are more effective than others. Using various instruments for data collection and by means of a thorough analysis I present evidence of the effectiveness of this action research project which aims to improve my own teaching practices, with the ultimate goal of enhancing student’s learning.
Resumo:
Purpose: Investigations of foveal aberrations assume circular pupils. However, the pupil becomes increasingly elliptical with increase in visual field eccentricity. We address this and other issues concerning peripheral aberration specification. Methods: One approach uses an elliptical pupil similar to the actual pupil shape, stretched along its minor axis to become a circle so that Zernike circular aberration polynomials may be used. Another approach uses a circular pupil whose diameter matches either the larger or smaller dimension of the elliptical pupil. Pictorial presentation of aberrations, influence of wavelength on aberrations, sign differences between aberrations for fellow eyes, and referencing position to either the visual field or the retina are considered. Results: Examples show differences between the two approaches. Each has its advantages and disadvantages, but there are ways to compensate for most disadvantages. Two representations of data are pupil aberration maps at each position in the visual field and maps showing the variation in individual aberration coefficients across the field. Conclusions: Based on simplicity of use, adequacy of approximation, possible departures of off-axis pupils from ellipticity, and ease of understanding by clinicians, the circular pupil approach is preferable to the stretched elliptical approach for studies involving field angles up to 30 deg.
Resumo:
Deep Raman spectroscopy has been utilized for the standoff detection of concealed chemical threat agents from a distance of 15 meters under real life background illumination conditions. By using combined time and space resolved measurements, various explosive precursors hidden in opaque plastic containers were identified non-invasively. Our results confirm that combined time and space resolved Raman spectroscopy leads to higher selectivity towards the sub-layer over the surface layer as well as enhanced rejection of fluorescence from the container surface when compared to standoff spatially offset Raman spectroscopy. Raman spectra that have minimal interference from the packaging material and good signal-to-noise ratio were acquired within 5 seconds of measurement time. A new combined time and space resolved Raman spectrometer has been designed with nanosecond laser excitation and gated detection, making it of lower cost and complexity than picosecond-based laboratory systems.
Resumo:
The quest for the achievement of informed nature of science (NOS) views for all learners continues to inspire science educators to seek out effective instructional interventions to aid in the development of learners’ NOS views. Despite the extensive amount of research conducted in the field, the development of informed NOS views has been difficult to achieve, with many studies reporting difficulties in changing learners’ NOS views. Can engaging learners in argumentation lead to improvements in their NOS views? This review answers this question by examining studies which have explored NOS and argumentation in science education. The review also outlines a rationale for incorporating argumentation in science education, together with a brief overview of important recent studies in the field. Implications drawn from this review suggest that the incorporation of explicit NOS and argumentation instruction, together with consideration of various contextual, task-specific and personal factors which could mediate learners’ NOS views and engagement in argumentation, could lead to improvements in learners’ views of NOS.
Resumo:
Curriculum developers and researchers have promoted context based programmes to arrest waning student interest and participation in the enabling sciences at high school and university. Context-based programmes aim for connections between scientific discourse and real-world contexts to elevate curricular relevance without diminishing conceptual understanding. Literature relating to context-based approaches to learning will be reviewed in this chapter. In particular, international trends in curricular development and results from evaluations of major projects (e.g. PLON, Salters Advanced Chemistry, ChemCom) will be highlighted. Research projects that explore context-based interventions focusing on such outcomes as student interest, perceived relevance and conceptual understanding also will feature in the review. The chapter culminates with a discussion of current context-based research that interprets classroom actions from a dialectical socio-cultural framework, and identifies possible new directions for research.
Resumo:
Consider the concept combination ‘pet human’. In word association experiments, human subjects produce the associate ‘slave’ in relation to this combination. The striking aspect of this associate is that it is not produced as an associate of ‘pet’, or ‘human’ in isolation. In other words, the associate ‘slave’ seems to be emergent. Such emergent associations sometimes have a creative character and cognitive science is largely silent about how we produce them. Departing from a dimensional model of human conceptual space, this article will explore concept combinations, and will argue that emergent associations are a result of abductive reasoning within conceptual space, that is, below the symbolic level of cognition. A tensor-based approach is used to model concept combinations allowing such combinations to be formalized as interacting quantum systems. Free association norm data is used to motivate the underlying basis of the conceptual space. It is shown by analogy how some concept combinations may behave like quantum-entangled (non-separable) particles. Two methods of analysis were presented for empirically validating the presence of non-separable concept combinations in human cognition. One method is based on quantum theory and another based on comparing a joint (true theoretic) probability distribution with another distribution based on a separability assumption using a chi-square goodness-of-fit test. Although these methods were inconclusive in relation to an empirical study of bi-ambiguous concept combinations, avenues for further refinement of these methods are identified.
Resumo:
Compositionality is a frequently made assumption in linguistics, and yet many human subjects reveal highly non-compositional word associations when confronted with novel concept combinations. This article will show how a non-compositional account of concept combinations can be supplied by modelling them as interacting quantum systems.
Resumo:
Traffic generated semi and non volatile organic compounds (SVOCs and NVOCs) pose a serious threat to human and ecosystem health when washed off into receiving water bodies by stormwater. Climate change influenced rainfall characteristics makes the estimation of these pollutants in stormwater quite complex. The research study discussed in the paper developed a prediction framework for such pollutants under the dynamic influence of climate change on rainfall characteristics. It was established through principal component analysis (PCA) that the intensity and durations of low to moderate rain events induced by climate change mainly affect the wash-off of SVOCs and NVOCs from urban roads. The study outcomes were able to overcome the limitations of stringent laboratory preparation of calibration matrices by extracting uncorrelated underlying factors in the data matrices through systematic application of PCA and factor analysis (FA). Based on the initial findings from PCA and FA, the framework incorporated orthogonal rotatable central composite experimental design to set up calibration matrices and partial least square regression to identify significant variables in predicting the target SVOCs and NVOCs in four particulate fractions ranging from >300-1 μm and one dissolved fraction of <1 μm. For the particulate fractions range >300-1 μm, similar distributions of predicted and observed concentrations of the target compounds from minimum to 75th percentile were achieved. The inter-event coefficient of variations for particulate fractions of >300-1 μm were 5% to 25%. The limited solubility of the target compounds in stormwater restricted the predictive capacity of the proposed method for the dissolved fraction of <1 μm.
Resumo:
Natural convection in a triangular enclosure subject to non-uniformly cooling at the inclined surfaces and uniformly heating at the base is investigated numerically. The numerical simulations of the unsteady flows over a range of Rayleigh numbers and aspect ratios are carried out using Finite Volume Method. Since the upper surface is cooled and the bottom surface is heated, the air flow in the enclosure is potentially unstable to Rayleigh Benard instability. It is revealed that the transient flow development in the enclosure can be classified into three distinct stages; an early stage, a transitional stage and a steady stage. It is also found that the flow inside the enclosure strongly depends on the governing parameters; Rayleigh number and aspect ratio. The asymmetric behaviour of the flow about the geometric centre line is discussed in detailed. The heat transfer through the roof and the ceiling as a form of Nusselt number is also reported in this study.
Resumo:
Spatially offset Raman spectroscopy (SORS) is demonstrated for the non-contact detection of energetic materials concealed within non-transparent, diffusely scattering containers. A modified design of an inverse SORS probe has been developed and tested. The SORS probe has been successfully used for the detection of various energetic substances inside different types of plastic containers. The tests have been successfully conducted under incandescent and fluorescent background lights as well as under daylight conditions, using a non-contact working distance of 6 cm. The interrogation times for the detection of the substances were less than 1 minute in each case, highlighting the suitability of the device for near real-time detection of concealed hazards in the field. The device has potential applications in forensic analysis and homeland security investigations.
Resumo:
The question of under what conditions conceptual representation is compositional remains debatable within cognitive science. This paper proposes a well developed mathematical apparatus for a probabilistic representation of concepts, drawing upon methods developed in quantum theory to propose a formal test that can determine whether a specific conceptual combination is compositional, or not. This test examines a joint probability distribution modeling the combination, asking whether or not it is factorizable. Empirical studies indicate that some combinations should be considered non-compositionally.
Resumo:
We report a method for controlling the exposed facets and hence the dimensionality and shape of ZnO nanocrystals using a non-hydrolytic aminolysis synthesis route. The effects of changes to reaction conditions on ZnO formation were investigated and possible self-assembly mechanisms proposed. The crystal facet growth and hence morphologies of the ZnO nanocrystals were controlled by varying reaction temperature and the reactant ratio. Four distinct ZnO nanocrystal types were produced (nanocones, nanobullets, nanorods and nanoplates). The relative photocatalytic activities of the exposed facets of these ZnO nanostructures were also examined, which showed the activities obviously depended on the reactivity of exposed crystal facets in the order: {1011}>>{0001}, {1010}.
Resumo:
How can a holistic approach to library and information science education encompassing vocational and university sectors that meets the future information workforce requirements be achieved? This paper will outline a twelve month national project that considered this very question. Funded by the Australian Learning and Teaching Council (ALTC).
Resumo:
The paper is an outline of work done from 1977-1979 by the authors, as visiting scientists at the Charles Darwin Research Station in the Galapagos Islands, Ecuador.They were funded for three years by the WWF (World Wildlife Fund)and the Bird Preservation Society of UK to study the breeding biology and ethology of Flightless cormorants and the Greater Flamingo. The presentation includes human aspects of living on and travelling between uninhabited islands.