989 resultados para rot fungi


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ceriporiopsis subvermispora is a promising white-rot fungus for biopulping. However, the underlying biochemistry involved in lignin removal and insignificant cellulose degradation by this species is not completely understood. This paper addresses this topic focusing on the involvement of ethanol-soluble extractives and wood transformation products in the biodegradation process. Cultures containing ethanol-extracted or in natura wood chips presented similar levels of extracellular enzymes and degradation of wood components. Fe3+-reducing compounds present in undecayed Pinus taeda were rapidly diminished by fungal degradation. Lignin-degradation products released during biodegradation restored part of the Fe3+-reducing activity. However, Fe3+ reduction was ineffective in presence of 0.5 mM oxalate at pH 4.5. Fungal consumption of Fe3+-reducing compounds and secretion of oxalic acid minimized the significance of Fenton`s reaction in the initial stages of wood biotreatment. This would explain limited polysaccharide degradation by the fungus that also lacks a complete set of hydrolytic enzymes. Scientific relevance of the paper: Ceriporiopsis subvermispora is a white-rot fungus suitable for biopulping processes because it degrades lignin selectively and causes significant structural changes on the wood components during the earlier decay stages. However, the intricate mechanism to explain lignin transformation and insignificant cellulose degradation by this species remains poorly understood. Some recent evidences pointed out for lipid peroxidation reactions as all initiating process explaining lignin degradation. On the other hand, alkylitaconic acids produced by the fungus via transformations of fatty acids occurring in wood showed to prevent polysaccharide degradation in Fenton reactions. In this context, one may conclude that the involvement of native wood substances or their transformation products in the overall wood biodegradation process induced by C subvermispora is still a matter of discussion. While free and esterified fatty acids present in wood extractives may be involved in the biosynthesis of alkylitaconic acids and in lipid peroxidation reactions, some extractives and lignin degradation products can reduce Fe3+, providing Fe2+ species needed to form OH radical via Fenton`s reaction. The present study focuses on this topic by evaluating the relevance of ethanol-soluble extractives and wood transformation products on the biodegradation of P. taeda by C subvermispora. For this, solid-state cultures containing ethanol-extracted and in natura wood chips were evaluated in details for up to 4 weeks. (C) 2007 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effect of different culture conditions have been evaluated concerning the extracellular enzyme activities of the white-rot fungus Ceriporiopsis subvermispora growing on Eucalyptus grandis wood. The consequence of the varied fungal pretreatment on a subsequent chemithermomechanical pulping (CTMP) was addressed. In all cultures, manganese peroxidase (MnP) and xylanase were the predominant extracellular enzymes. The biopulping efficiency was evaluated based on the amount of fiber bundles obtained after the first fiberizing step and the fibrillation levels of refined pulps. It was found that the MnP levels in the cultures correlated positively with the biopulping benefits. On the other hand, xylanase and total oxalate levels did not vary significantly. Accordingly, it was not possible to determine whether MnP accomplishes the effect alone or depends on synergic action of other extracellular agents. Pulp strength and fiber size distribution were also evaluated. The average fiber length of CTMP pulps prepared from untreated wood chips was 623 mu m. Analogous values were observed for most of the biopulps; however, significant amounts of shorter fibers were found in the biopulp prepared from wood chips biotreated in cultures supplemented with glucose plus corn-steep liquor. Despite evidence of reduced average fiber length, biopulps prepared from these wood chips presented the highest improvement in tensile indexes (+28% at 23 degrees Schopper-Riegler).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work work evaluates linoleic acid peroxidation reactions initiated by Fe(3+)-reducing compounds recovered from Eucalyptus grandis, biotreated with the biopulping fungus Ceriporiopsis subvermispora. The aqueous extracts from biotreated wood had the ability to reduce Fe(3+) ions from freshly prepared solutions. The compounds responsible for the Fe(3+)-reducing activity corresponded to UV-absorbing substances with apparent molar masses from 3 kDa to 5 kDa. Linoleic acid peroxidation reactions conducted in the presence of Fe(3+) ions and the Fe(3+)-reducing compounds showed that the rate of O(2) consumption during peroxidation was proportional to the Fe(3+)-reducing activity present in each extract obtained from biotreated wood. This peroxidation reaction was coupled with in-vitro treatment of ball-milled E. grandis wood. Ultraviolet data showed that the reaction system released lignin fragments from the milled wood. Size exclusion chromatography data indicated that the solubilized material contained a minor fraction representing high-molar-mass molecules excluded by the column and a main low-molar-mass peak. Overall evaluation of the data suggested that the Fe(3+)-reducing compounds formed during wood biodegradation by C subvermispora can mediate lignin degradation through linoleic acid peroxidation. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pinus taeda wood chips were treated with the biopulping fungus Ceriporiopsis subvermispora in soybean-oil-amended cultures The secretion of oxalic acid and the accumulation of thiobarbituric acid reactive substances were significantly increased in soybean-oil-amended cultures By contrast the secretion of hydrolytic and oxidative enzymes was not altered in the cultures Biotreated wood samples were characterized for weight and component losses as well as by in-situ thioacidolysis Residual lignins were also extracted from biotreated wood using a mild-non-razing extraction procedure The lignins were characterized by (31)P nuclear magnetic resonance ((31)P-NMR) spectroscopy Soybean oil amendment in the cultures was found to affect lignin degradation routes however it inhibited depolymerization reactions detectable in the residual lignin that was retained in the biotreated wood As a consequence chemithermomechanical pulping of the biotreated samples was not improved by soybean oil amendment in the cultures Crown Copyright (C) 2010 Published by Elsevier Ltd All rights reserved

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ceriporiopsis subvermispora is a white-rot fungus used in biopulping processes and seems to use the fatty acid peroxidation reactions initiated by manganese-peroxidase (MnP) to start lignin degradation. The present work shows that C. subvermispora was able to peroxidize unsaturated fatty acids during wood biotreatment under biopulping conditions. In vitro assays showed that the extent of linoleic acid peroxidation was positively correlated with the level of MnP recovered from the biotreated wood chips. Milled wood was treated in vitro by partially purified MnP and linoleic acid. UV spectroscopy and size exclusion chromatography (SEC) showed that soluble compounds similar to lignin were released from the milled wood. SEC data showed a broad elution profile compatible with low molar mass lignin fractions. MnP-treated milled wood was analyzed by thioacidolysis. The yield of thioacidolysis monomers recovered from guaiacyl and syringyl units decreased by 33% and 20% in MnP-treated milled wood, respectively. This has suggested that lignin depolymerization reactions have occurred during the MnP/linoleic acid treatment. (C) 2009 Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Four different architectural acrylic paint formulations were tested by exposure to weathering for 7 years in the urban site of Sao Paulo and the coastal site of Ubatuba, South-East Brazil. Surface discolorations and detachment of coatings were assessed and the components of the biofilms were identified by standard microbiological methods. The painted surfaces of the mortar panels were much more discolored in Ubatuba, where major components of the biofilms were the cyanobacteria Gloeocapsa and Scytonema. In two of the four paint films, a pink coloration on the surface at this coastal site, caused mainly by red-pigmented Gloeocapsa, produced high discoloration ratings, but low degradation (as measured by detachment). Biofilms in Sao Paulo contained the same range of phototrophs, but in lesser quantity. However, fungal numbers, as determined by plating, were higher. Detachment ratings in this urban site were only slightly lower than in Ubatuba. The matt paint performed worst of the four, with silk and semi-gloss finishes giving lowest biodeterioration ratings. The matt elastomeric paint performed well at both sites, apart from becoming almost 100% covered by the pink biofilm in Ubatuba. Unpainted mortar panels became intensely discolored with a black biofilm, showing that all the paints had achieved one of their objectives, that of surface protection of the substrate. The value of PVC (pigment volume content) as an indicator of coatings biosusceptibility, is questioned. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Penicillium chrysogenum is widely used as an industrial antibiotic producer, in particular in the synthesis of g-lactam antibiotics such as penicillins and cephalosporins. In industrial processes, oxalic acid formation leads to reduced product yields. Moreover, precipitation of calcium oxalate complicates product recovery. We observed oxalate production in glucose-limited chemostat cultures of P. chrysogenum grown with or without addition of adipic acid, side-chain of the cephalosporin precursor adipoyl-6-aminopenicillinic acid (ad-6-APA). Oxalate accounted for up to 5% of the consumed carbon source. In filamentous fungi, oxaloacetate hydrolase (OAH; EC3.7.1.1) is generally responsible for oxalate production. The P. chrysogenum genome harbours four orthologs of the A. niger oahA gene. Chemostat-based transcriptome analyses revealed a significant correlation between extracellular oxalate titers and expression level of the genes Pc18g05100 and Pc22g24830. To assess their possible involvement in oxalate production, both genes were cloned in Saccharomyces cerevisiae, yeast that does not produce oxalate. Only the expression of Pc22g24830 led to production of oxalic acid in S. cerevisiae. Subsequent deletion of Pc22g28430 in P. chrysogenum led to complete elimination of oxalate production, whilst improving yields of the cephalosporin precursor ad-6-APA. (C) 2011 Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Owing to its toxicity, aluminum (Al), which is one of the most abundant metals, inhibits the productivity of many cultures and affects the microbial metabolism. The aim of this work was to investigate the capacity of sugar cane vinasse to mitigate the adverse effects of Al on cell growth, viability, and budding, as the likely result of possible chelating action. For this purpose, Fleischmann`s yeast (Saccharomyces cerevisiae) was used in growth tests performed in 125-mL Erlenmeyer flasks containing 30 mL of YED medium (5.0 g/L yeast extract plus 20 g/L glucose) supplemented with the selected amounts of either vinasse or Al in the form of AlCl(3) center dot A H(2)O. Without vinasse, the addition of increasing levels of Al up to 54 mg/L reduced the specific growth rate by 18%, whereas no significant reduction was observed in its presence. The toxic effect of Al on S. cerevisiae growth and the mitigating effect of sugar cane vinasse were quantified by the exponential model of Ciftci et al. (Biotechnol Bioeng 25:2007-2023, 1983). The cell viability decreased from 97.7% at the start to 84.0% at the end of runs without vinasse and to 92.3% with vinasse. On the other hand, the cell budding increased from 7.62% at the start to 8.84% at the end of runs without vinasse and to 17.8% with vinasse. These results demonstrate the ability of this raw material to stimulate cell growth and mitigate the toxic effect of Al.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study aimed at evaluating the mechanical, physical and biological properties of laminated veneer lumber (LVL) made from Pinus oocarpa Schiede ex Schltdl (PO) and Pinus kesiya Royle ex Gordon (PK) and at providing a nondestructive characterization thereof. Four PO and four PK LVL boards from 22 randomly selected 2-mm thickness veneers were produced according to the following characteristics: phenol-formaldehyde (190 g/m(2)), hot-pressing at 150A degrees C for 45 min and 2.8 N/mm(2) of specific pressure. After board production, nondestructive evaluation was conducted, and stress wave velocity (v (0)) and dynamic modulus of elasticity (E (Md) ) were determined. The following mechanical and physical properties were then evaluated: static bending modulus of elasticity (E (M) ), modulus of rupture (f (M) ), compression strength parallel to grain (f (c,0)), shear strength parallel to glue-line (f (v,0)), shear strength perpendicular to glue-line (f (v,90)), thickness swelling (TS), water absorption (WA), and permanent thickness swelling (PTS) for 2, 24, and 96-hour of water immersion. Biological property was also evaluated by measuring the weight loss by Trametes versicolor (Linnaeus ex Fries) Pilat (white-rot) and Gloeophyllum trabeum (Persoon ex Fries.) Murrill (brown-rot). After hot-pressing, no bubbles, delamination nor warping were observed for both species. In general, PK boards presented higher mechanical properties: E (M) , E (Md) , f (M) , f (c,0) whereas PO boards were dimensionally more stable, with lower values of WA, TS and PTS in the 2, 24, and 96-hour immersion periods. Board density, f (v,0), f (v,90) and rot weight loss were statistically equal for PO and PK LVL. The prediction of flexural properties of consolidated LVL by the nondestructive method used was not very efficient, and the fitted models presented lower predictability.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fungal entomopathogens have been used more frequently than other types of pathogens for classical biological control. Among 136 programs using different groups of arthropod pathogens, 49.3% have introduced fungal pathogens (including both the traditional fungi and microsporidia). The most commonly introduced species was Metarhizium anisopliae (Metschnikoff) Sorokin, with 13 introductions, followed by Entomophaga maimaiga Humber, Shimazu & Soper, which was released seven times. The majority of introduction programs have focused on controlling invasive species of insects or mites (70.7%) rather than on native hosts (29.4%). Almost half of the introductions of traditional fungi targeted species of Hemiptera and 75% of the microsporidia introduced have been introduced against lepidopteran species. The United States was the country where most introductions of fungi took place (n = 24). From 1993 to 2007, no arthropod pathogens were released in the US due to the rigorous regulatory structure, but in 2008 two species of microsporidia were introduced against the gypsy moth, Lymantria dispar (L.). Establishment of entomopathogenic fungi in programs introducing traditional fungi was 32.1% and establishment was 50.0% for programs introducing microsporidia. In some programs, releases have resulted in permanent successful establishment with no non-target effects. In summary, classical biological control using fungal entomopathogens can provide a successful and environmentally friendly avenue for controlling arthropod pests, including the increasing numbers of invasive non-native species.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The success in the adoption of peach integrated production (IP) was evaluated in small orchards of the Parana State. The importance of specific technical accompaniment; points of strangulating in adoption of technology and the classification of the areas to IP conformity were evaluated. The seasons 2005/2006 (without IP orientation) and 2006/2007 (with IP orientation) were compared considering 20 producers who were oriented monthly to attend the minimum requisites. The incidence of peach rust (Tranzschelia discolor) and of brown rot (Monilinia fructicola) in full bloom was evaluated in 2006/2007 and 2007/2008 seasons, as biological parameters to accompany the efficiency of system adoption. After the technical accompaniment in 2007/2008 season, the software APOIA-Novo Rural-PI (APOIA-PI) was applied to measure the conformity to IP in peach orchards. The conformity index of each orchard was compared to the minimum requisite to classify as IP (0.7). The major difficulties in register of field book were: pests monitoring; collect of climate data and the harvest evaluation. The technical accompaniment increased in 60% the conformity in use of field book. In 2007/2008 season, the brown rot incidence increased in some areas, caused by not following IP recommendations. The inadequate management caused the increment in pathogen inoculum, promoting the disease development in peach orchards. The APOIA-PI classified two orchards as good agricultural practices (GAP) (0.7 <= conformity index >= 0.4), two as integrated production (IP) (>= 0.7) and the other orchards had conformity index lower than 0.4.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Due to the low chemical control effectiveness of citrus black spot, caused by the fungus Guignardia citricarpa at postharvest, and to the search for alternative control methods, this study aimed to evaluate the in vitro effect of volatile organic compounds (VOCs), produced by yeast Saccharomyces cerevisiae, on G. citricarpa. It was observed that the yeast strains evaluated acted as antagonists by VOC production, whose maximum inhibitory capacity was as high as 87.2%. The presence of fermentable carbon sources in the medium was essential for the bioactive VOC production by the yeast. The analysis of VOCs produced in PDA medium by SPME-GC-MS indicated the presence of high quantities of alcohols as well as esters. An artificial VOC mixture prepared on the basis of the composition of the VOCs mimicked the inhibitory effects of the natural VOCs released by S. cerevisiae. Thus, the VOCs produced by the yeast or the artificial mixtures can be a promising control method for citrus black spot or others postharvest diseases.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Endophytic microorganisms reside asymptomatically within plants and are a source of new bioactive products for use in medicine, agriculture, and industry. Colletotrichum (teleomorph Glomerella) is a fungus widely cited in the literature as a producer of antimicrobial substances. Identification at the species level, however, has been a problem in this type of study. Several authors have reported the presence of endophytic fungi from the medicinal plant Maytenus ilicifolia (espinheira-santa) in Brazil that has antimicrobial activity against various pathogens. Therefore, Colletotrichum strains were isolated from M. ilicifolia and identified based on morphology, RAPD markers, sequence data of the internal transcribed spacer regions (ITS-1 and ITS-2), the 5.8S gene, and species-specific PCR. The analyses suggested the presence of 2 species, Colletotrichum gloeosporioides and Colletotrichum boninense. Two morphological markers were characterized to allow C. gloeosporioides and C. boninense to be distinguished quickly and accurately. The molecular diagnosis of C. boninense was confirmed by using Coll and ITS4 primers. This species of Colletotrichum is reported for the first time in M. ilicifolia.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The influence of arbuscular mycorrhizal fungi (AMF) inoculation on Canavalia ensiformis growth. nutrient and Zn uptake, and on some physiological parameters in response to increasing soil Zn concentrations was studied. Treatments were applied in seven replicates in a 2 x 4 factorial design, consisting of the inoculation or not with the AMF Glomus etunicatum, and the addition of Zn to soil at the concentrations of 0, 100, 300 and 900 mg kg(-1). AMF inoculation enhanced the accumulation of Zn in tissues and promoted biomass yields and root nodulation. Mycorrhizal plants exhibited relative tolerance to Zn up to 300 mg kg(-1) without exhibiting visual symptoms of toxicity, in contrast to non-mycorrhizal plants which exhibited a significant growth reduction at the same soil Zn concentration. The highest concentration of Zn added to soil was highly toxic to the plants. Leaves of plants grown in high Zn concentration exhibited a Zn-induced proline accumulation and also an increase in soluble amino acid contents; however proline contents were lower in mycorrhizal jack beans. Plants in association or not with the AMF exhibited marked differences in the foliar soluble amino acid profile and composition in response to Zn addition to soil. In general, Zn induced oxidative stress which could be verified by increased lipid peroxidation rates and changes in catalase, ascorbate peroxidase, glutathione reductase and superoxide dismutase activities. In summary, G. etunicatum was able to maintain an efficient symbiosis with jack bean plants in moderately contaminated Zn-soils, improving plant performance under those conditions, which is likely to be due to a combination of physiological and nutritional changes caused by the intimate relation between fungus and plant. The enhanced Zn uptake by AMF inoculated jack bean plants might be of interest for phytoremediation purposes. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fifty-three endophytic enterobacteria isolates from citrus, cocoa, eucalyptus, soybean, and sugar cane were evaluated for susceptibility to the antibiotics ampicillin and kanamycin, and cellulase production. Susceptibility was found on both tested antibiotics. However, in the case of ampicillin susceptibility changed according to the host plant, while all isolates were susceptible to kanamycin. Cellulase production also changed according to host plants. The diversity of these. isolates was estimated by employing BOX-PCR genomic fingerprints and 16S rDNA sequencing. In total, twenty-three distinct operational taxonomic units (OTUs) were identified by employing a criterion of 60% fingerprint similarity as a surrogate for an OTU. The 23 OTUs belong to the Pantoea and Enterobacter genera, while their high diversity could be an indication of paraphyletic classification. Isolates representing nine different OTUs belong to Pantoea agglomerans, P. ananatis, P, stewartii, Enterobacter sp., and E. homaechei. The results of this study suggest that plant species may select endophytic bacterial genotypes. It has also become apparent that a review of the Pantoea/Enterobacter genera may be necessary.