936 resultados para pitch interpolation
Resumo:
This work investigates limit cycle oscillations in the transonic regime. A novel approach to predict Limit Cycle Oscillations using high fidelity analysis is exploited to accelerate calculations. The method used is an Aeroeasltic Harmonic Balance approach, which has been proven to be efficient and able to predict periodic phenomena. The behaviour of limit cycle oscillations is analysed using uncertainty quantification tools based on polynomial chaos expansions. To improve the efficiency of the sampling process for the polynomial-chaos expansions an adaptive sampling procedure is used. These methods are exercised using two problems: a pitch/plunge aerofoil and a delta-wing. Results indicate that Mach n. variability is determinant to the amplitude of the LCO for the 2D test case, whereas for the wing case analysed here, variability in the Mach n. has an almost negligible influence in amplitude variation and the LCO frequency variability has an almost linear relation with Mach number. Further test cases are required to understand the generality of these results.
Resumo:
While the origins of consonance and dissonance in terms of acoustics, psychoacoustics and physiology have been debated for centuries, their plausible effects on movement synchronization have largely been ignored. The present study aims to address this by investigating whether, and if so how, consonant/dissonant pitch intervals affect the spatiotemporal properties of regular reciprocal aiming movements. We compared movements synchronized either to consonant or to dissonant sounds, and showed that they were differently influenced by the degree of consonance of the sound presented. Interestingly, the difference was present after the sound stimulus was removed. In this case, the performance measured after consonant sound exposure was found to be more stable and accurate, with a higher percentage of information/movement coupling (tau-coupling) and a higher degree of movement circularity when compared to performance measured after the exposure to dissonant sounds. We infer that the neural resonance representing consonant tones leads to finer perception/action coupling which in turn may help explain the prevailing preference for these types of tones.
Resumo:
This work proposes a novel approach to compute transonic limit-cycle oscillations using high-fidelity analysis. Computational-Fluid-Dynamics based harmonic balance methods have proven to be efficient tools to predict periodic phenomena. This paper’s contribution is to present a new methodology to determine the unknown frequency of oscillations, enabling harmonic balance methods to accurately capture limit-cycle oscillations; this is achieved by defining a frequency-updating procedure based on a coupled computational-fluid-dynamics/computational-structural-dynamics harmonic balance formulation to find the limit-cycle oscillation condition. A pitch/plunge airfoil and delta wing aerodynamic and respective linear structural models are used to validate the new method against conventional time-domain simulations. Results show consistent agreement between the proposed and time-marching methods for both limit-cycle oscillation amplitude and frequency while producing at least a one-order-of-magnitude reduction in computational time.
Resumo:
Artificial neural network (ANN) methods are used to predict forest characteristics. The data source is the Southeast Alaska (SEAK) Grid Inventory, a ground survey compiled by the USDA Forest Service at several thousand sites. The main objective of this article is to predict characteristics at unsurveyed locations between grid sites. A secondary objective is to evaluate the relative performance of different ANNs. Data from the grid sites are used to train six ANNs: multilayer perceptron, fuzzy ARTMAP, probabilistic, generalized regression, radial basis function, and learning vector quantization. A classification and regression tree method is used for comparison. Topographic variables are used to construct models: latitude and longitude coordinates, elevation, slope, and aspect. The models classify three forest characteristics: crown closure, species land cover, and tree size/structure. Models are constructed using n-fold cross-validation. Predictive accuracy is calculated using a method that accounts for the influence of misclassification as well as measuring correct classifications. The probabilistic and generalized regression networks are found to be the most accurate. The predictions of the ANN models are compared with a classification of the Tongass national forest in southeast Alaska based on the interpretation of satellite imagery and are found to be of similar accuracy.
Resumo:
1. The prediction and mapping of climate in areas between climate stations is of increasing importance in ecology.
2. Four categories of model, simple interpolation, thin plate splines, multiple linear regression and mixed spline-regression, were tested for their ability to predict the spatial distribution of temperature on the British mainland. The models were tested by external cross-verification.
3. The British distribution of mean daily temperature was predicted with the greatest accuracy by using a mixed model: a thin plate spline fitted to the surface of the country, after correction of the data by a selection from 16 independent topographical variables (such as altitude, distance from the sea, slope and topographic roughness), chosen by multiple regression from a digital terrain model (DTM) of the country.
4. The next most accurate method was a pure multiple regression model using the DTM. Both regression and thin plate spline models based on a few variables (latitude, longitude and altitude) only were comparatively unsatisfactory, but some rather simple methods of surface interpolation (such as bilinear interpolation after correction to sea level) gave moderately satisfactory results. Differences between the methods seemed to be dependent largely on their ability to model the effect of the sea on land temperatures.
5. Prediction of temperature by the best methods was greater than 95% accurate in all months of the year, as shown by the correlation between the predicted and actual values. The predicted temperatures were calculated at real altitudes, not subject to sea-level correction.
6. A minimum of just over 30 temperature recording stations would generate a satisfactory surface, provided the stations were well spaced.
7. Maps of mean daily temperature, using the best overall methods are provided; further important variables, such as continentality and length of growing season, were also mapped. Many of these are believed to be the first detailed representations at real altitude.
8. The interpolated monthly temperature surfaces are available on disk.
Resumo:
Bdellovibrio bacteriovorus cells have a single polar flagellum whose helical pitch and diameter characteristically change near the midpoint, resulting in a tapered wave. There are six flagellin genes in the genome: fliC1 to fliC6. Accordingly, the flagellar filament is composed of several similar flagellin species. We have used knockout mutants of each gene and analyzed the mutational effects on the filament length and on the composition and localization of each flagellin species in the filament by electron microscopy and one- and two-dimensional polyacrylamide gel electrophoresis. The location and amounts of flagellins in a filament were determined to be as follows: a small amount of FliC3 at the proximal end, followed by a large amount of FliC5, a large amount of FliC1, a small amount of FliC2 in this order, and a large amount of FliC6 at the distal end. FliC4 was present at a low level, but the location was not determined. Filament lengths of newly born progeny cells increased during prolonged incubation in nutrient-deficient buffer. The newly formed part of the elongated filament was composed of mainly FliC6. Reverse transcription PCR analysis of flagellar gene expression over 5 days in buffer showed that fliC gene expression tailed off over 5 days in the wild-type cells, but in the fliC5 mutant, expression of the fliC2, fliC4, and fliC6 genes was elevated on day 5, suggesting that they may be expressed to compensate for the absence of a major component, FliC5.
Resumo:
The design optimization of a cold-formed steel portal frame building is considered in this paper. The proposed genetic algorithm (GA) optimizer considers both topology (i.e., frame spacing and pitch) and cross-sectional sizes of the main structural members as the decision variables. Previous GAs in the literature were characterized by poor convergence, including slow progress, that usually results in excessive computation times and/or frequent failure to achieve an optimal or near-optimal solution. This is the main issue addressed in this paper. In an effort to improve the performance of the conventional GA, a niching strategy is presented that is shown to be an effective means of enhancing the dissimilarity of the solutions in each generation of the GA. Thus, population diversity is maintained and premature convergence is reduced significantly. Through benchmark examples, it is shown that the efficient GA proposed generates optimal solutions more consistently. A parametric study was carried out, and the results included. They show significant variation in the optimal topology in terms of pitch and frame spacing for a range of typical column heights. They also show that the optimized design achieved large savings based on the cost of the main structural elements; the inclusion of knee braces at the eaves yield further savings in cost, that are significant.
Resumo:
The assimilation of discrete higher fidelity data points with model predictions can be used to achieve a reduction in the uncertainty of the model input parameters which generate accurate predictions. The problem investigated here involves the prediction of limit-cycle oscillations using a High-Dimensional Harmonic Balance method (HDHB). The efficiency of the HDHB method is exploited to enable calibration of structural input parameters using a Bayesian inference technique. Markov-chain Monte Carlo is employed to sample the posterior distributions. Parameter estimation is carried out on both a pitch/plunge aerofoil and Goland wing configuration. In both cases significant refinement was achieved in the distribution of possible structural parameters allowing better predictions of their
true deterministic values.
Resumo:
Clathrin-mediated vesicle recycling in synapses is maintained by a unique set of endocytic proteins and interactions. We show that endophilin localizes in the vesicle pool at rest and in spirals at the necks of clathrin-coated pits (CCPs) during activity in lamprey synapses. Endophilin and dynamin colocalize at the base of the clathrin coat. Protein spirals composed of these proteins on lipid tubes in vitro have a pitch similar to the one observed at necks of CCPs in living synapses, and lipid tubules are thinner than those formed by dynamin alone. Tubulation efficiency and the amount of dynamin recruited to lipid tubes are dramatically increased in the presence of endophilin. Blocking the interactions of the endophilin SH3 domain in situ reduces dynamin accumulation at the neck and prevents the formation of elongated necks observed in the presence of GTPγS. Therefore, endophilin recruits dynamin to a restricted part of the CCP neck, forming a complex, which promotes budding of new synaptic vesicles.
Resumo:
Quantifying the similarity between two trajectories is a fundamental operation in analysis of spatio-temporal databases. While a number of distance functions exist, the recent shift in the dynamics of the trajectory generation procedure violates one of their core assumptions; a consistent and uniform sampling rate. In this paper, we formulate a robust distance function called Edit Distance with Projections (EDwP) to match trajectories under inconsistent and variable sampling rates through dynamic interpolation. This is achieved by deploying the idea of projections that goes beyond matching only the sampled points while aligning trajectories. To enable efficient trajectory retrievals using EDwP, we design an index structure called TrajTree. TrajTree derives its pruning power by employing the unique combination of bounding boxes with Lipschitz embedding. Extensive experiments on real trajectory databases demonstrate EDwP to be up to 5 times more accurate than the state-of-the-art distance functions. Additionally, TrajTree increases the efficiency of trajectory retrievals by up to an order of magnitude over existing techniques.
Resumo:
This paper provides four viewpoints on the narratives of space, allowing us to think about possible relations between sites and sounds, reflecting on how places might tell stories, or how practitioners embed themselves in a place in order to shape cultural, social and/or political narratives through the use of sound. I propose four viewpoints that investigate the relationship between sites and sounds, where narratives are shaped and made through the exploration of specific sonic activities. These are:
- sonic activism
- sonic preservation
- sonic participatory action
- sonic narrative of space
I examine each of these ideas in turn before focusing in more detail on the final viewpoint, which provides the context for discussing and analysing a recent site-specific music improvisation project, entitled ‘Museum City’, a work that aligns closely with my proposal for a ‘sonic narrative of space’.
The work ‘Museum City’ by Pedro Rebelo, Franziska Schroeder, Ricardo Jacinto and André Cepeda specifically enables me to reflect on how derelict and/or transitional spaces might be re-examined through the use of sound, particularly through means of live music improvisation. The spaces examined as part ‘Museum City’ constitute either deserted sites or sites about to undergo changes in their architectural layout, their use and sonic make-up. The practice in ‘Museum City’ was born out of a performative engagement with[in] those sites, but specifically out of an intimate listening relationship by three improvisers situated within those spaces.
The theoretical grounding for this paper is situated within a wider context of practising and cognising musical spatiality, as proposed by Georgina Born (2013), particularly her proposition for three distinct lineages that provide an understanding of space in/and music. Born’s third lineage, which links more closely with practices of sound art and challenges a Euclidean orientation of pitch and timbre space, makes way for a heightened consideration of listening and ‘the place’ of sound. This lineage is particularly crucial for my discussion, since it positions music in relation to social experiences and the everyday, which the work ‘Museum City’ endeavoured to embrace.
Resumo:
Transonic tests in linear cascade wind tunnels can suffer
from significant test section boundary interference effects in pitch. A slotted tailboard has been designed and optimised with an in-house Euler numerical method to reduce such ef- fects. Wind tunnel measurements on an overspeed Mach 1.27 discharge from a Rolls-Royce T2 cascade, featuring strong end-wall shock-induced interference, showed a 77% reduction in the flow pitchwise periodicity error with the optimised tail- board, with respect to the baseline open-jet cascade flow. Two-dimensional Euler predictions were also cross-validated against a three-dimensional Reynolds averaged computation, to explore the three-dimensionality of the discharge
Resumo:
Esta tese apresenta alguns aspectos em como o fenómeno do gesto musical pode ser compreendido na percepção da interação musical na música para instrumentos e sons electroacústicos. Através de exemplos de análise, classificação e categorização de diferentes relacões gestuais entre instrumentos e sons electroacústicos, pretende-se estabelecer modelos específicos de interacção que podem ser aplicados como método analítico assim como na composição musical. A pesquisa parte de uma variedade de definições sobre gesto musical na música em geral, na música contemporânea e na música electroacústica em particular, para subsequentemente incluir as relações entre dois eventos sonoros com características diferentes - o electroacústico e o instrumental. São essencialmente abordadas as relações entre gestos musicais através da análise de diversas características: altura, ritmo, timbre, dinâmica, características contrapontísticas, espectromorfológicas, semânticas e espaciais. O resultado da pesquisa teórica serviu de suporte à composição de diversas obras, onde estes aspectos são explorados sob o ponto de vista da criação musical.
Resumo:
This thesis explores the possibilities of spatial hearing in relation to sound perception, and presents three acousmatic compositions based on a musical aesthetic that emphasizes this relation in musical discourse. The first important characteristic of these compositions is the exclusive use of sine waves and other time invariant sound signals. Even though these types of sound signals present no variations in time, it is possible to perceive pitch, loudness, and tone color variations as soon as they move in space due to acoustic processes involved in spatial hearing. To emphasize the perception of such variations, this thesis proposes to divide a tone in multiple sound units and spread them in space using several loudspeakers arranged around the listener. In addition to the perception of sound attribute variations, it is also possible to create rhythm and texture variations that depend on how sound units are arranged in space. This strategy permits to overcome the so called "sound surrogacy" implicit in acousmatic music, as it is possible to establish cause-effect relations between sound movement and the perception of sound attribute, rhythm, and texture variations. Another important consequence of using sound fragmentation together with sound spatialization is the possibility to produce diffuse sound fields independently from the levels of reverberation of the room, and to create sound spaces with a certain spatial depth without using any kind of artificial sound delay or reverberation.
Resumo:
Between the Bullet and the Hole is a film centred on the elusive and complex effects of war on women's role in ballistic research and early computing. The film features new and archival high-speed bullet photography, schlieren and electric spark imagery, bullet sound wave imagery, forensic ballistic photography, slide rulers, punch cards, computer diagrams, and a soundtrack by Scanner. Like a frantic animation storyboard, it explores the flickering space between the frames, testing the perceptual mechanics of visual interpolation, the possibility of reading or deciphering the gap between before and after. Interpolation - the main task of the women studying ballistics in WW2 - is the construction or guessing of missing data using only two known data points. The film tries to unpack this gap, open it up to interrogation. It questions how we read, interpolate or construct the gaps between bullet and hole, perpetrator and victim, presence and absence. The project involves exchanges with specialists in this area such as the Cranfield University Forensics department, London-based Forensic Firearms consultancy, the Imperial War Museum, the ENIAC programmers project, the Smithsonian Institute, and Forensic Scientists at Palm Beach County Sheriff's Office (USA). Exhibitions: Solo exhibition at Dallas Contemporary (Texas, Jan-Mar 2016), including newly commissioned lenticular prints and a dual slide projector installation; Group exhibition the Sydney Biennale (Sydney, Mar-June 2016); UK premiere and solo retrospective screening at Whitechapel Gallery (London); forthcoming solo exhibition at Iliya Fridman Gallery (NY, Oct-Dec 2016); Film festivals and screenings: International Film Festival Rotterdam (Jan 2016); Whitechapel Gallery (London Feb 2016); Cornerhouse/Home (Manchester Nov 2016); Public lectures: Whitechapel Gallery with prof. David Alan Grier and Morgan Quaintance; Carriageworks (Sydney) Prof. Douglas Khan; Monash University (Melbourne); Gertrude Space (Melbourne). Reviews and interviews: Artforum, Studio International, Mousse Magazine.