Reducing Parametric Uncertainty in Limit Cycle Oscillations


Autoria(s): Hayes, R.; Dwight, R.; Marques, S.
Data(s)

01/07/2015

Resumo

The assimilation of discrete higher fidelity data points with model predictions can be used to achieve a reduction in the uncertainty of the model input parameters which generate accurate predictions. The problem investigated here involves the prediction of limit-cycle oscillations using a High-Dimensional Harmonic Balance method (HDHB). The efficiency of the HDHB method is exploited to enable calibration of structural input parameters using a Bayesian inference technique. Markov-chain Monte Carlo is employed to sample the posterior distributions. Parameter estimation is carried out on both a pitch/plunge aerofoil and Goland wing configuration. In both cases significant refinement was achieved in the distribution of possible structural parameters allowing better predictions of their<br/>true deterministic values.

Formato

application/pdf

Identificador

http://pure.qub.ac.uk/portal/en/publications/reducing-parametric-uncertainty-in-limit-cycle-oscillations(288570db-187c-4e9d-b7a6-e2e8ba461a0b).html

http://pure.qub.ac.uk/ws/files/16209019/eccomas_yic_2015.pdf

Idioma(s)

eng

Direitos

info:eu-repo/semantics/openAccess

Fonte

Hayes , R , Dwight , R & Marques , S 2015 , ' Reducing Parametric Uncertainty in Limit Cycle Oscillations ' Paper presented at 3rd ECCOMAS Young Investigators Conference (YIC) , Aachen , Germany , 22/07/2015 - 24/07/2015 , .

Palavras-Chave #Harmonic Balance #nonlinear #inverse problem #aeroelasticity #Bayesian Updating
Tipo

conferenceObject