900 resultados para organ donation
Resumo:
Leptospirosis is one of the most common yet under reported zoonoses. Leptospires, the etiological agents of leptospirosis are ubiquitous pathogens, with a world-wide distribution, causing a spectrum of disease ranging from a mild influenza-like illness to Weil’s disease, which manifests itself in multi-organ failure. The following chapter reports on the epidemiology and transmission of the disease in humans and animals. The chapter will also delineate the symptoms observed in humans and animals and in concluding outline unresolved and evolving issues for microbiologists, epidemiologists and public health officials.
Resumo:
Background Flower development in kiwifruit (Actinidia spp.) is initiated in the first growing season, when undifferentiated primordia are established in latent shoot buds. These primordia can differentiate into flowers in the second growing season, after the winter dormancy period and upon accumulation of adequate winter chilling. Kiwifruit is an important horticultural crop, yet little is known about the molecular regulation of flower development. Results To study kiwifruit flower development, nine MADS-box genes were identified and functionally characterized. Protein sequence alignment, phenotypes obtained upon overexpression in Arabidopsis and expression patterns suggest that the identified genes are required for floral meristem and floral organ specification. Their role during budbreak and flower development was studied. A spontaneous kiwifruit mutant was utilized to correlate the extended expression domains of these flowering genes with abnormal floral development. Conclusions This study provides a description of flower development in kiwifruit at the molecular level. It has identified markers for flower development, and candidates for manipulation of kiwifruit growth, phase change and time of flowering. The expression in normal and aberrant flowers provided a model for kiwifruit flower development.
Resumo:
In Arabidopsis, the identity of perianth and reproductive organs are specified by antagonistic action of two floral homeotic genes, APETALA2 (AP2) and AGAMOUS (AG). AP2 is also negatively regulated by an evolutionary conserved interaction with a microRNA, miR172, and has additional roles in general plant development. A kiwifruit gene with high levels of homology to AP2 and AP2-like genes from other plant species was identified. The transcript was abundant in the kiwifruit flower, particularly petal, suggesting a role in floral organ identity. Splice variants were identified, all containing both AP2 domains, including a variant that potentially produces a shorter transcript without the miRNA172 targeting site. Increased AP2 transcript accumulation was detected in the aberrant flowers of the mutant 'Pukekohe dwarf' with multiple perianth whorls and extended petaloid features. In contrast to normal kiwifruit flowers, the aberrant flowers failed to accumulate miR172 in the developing whorls, although accumulation was detected at the base of the flower. An additional role during dormancy in kiwifruit was proposed based on AP2 transcript accumulation in axillary buds before and after budbreak.
Resumo:
Background The vegetative phenotype of the pea mutant unifoliata (uni) is a simplification of the wild-type compound leaf to a single leaflet. Mutant uni plants are also self-sterile and the flowers resemble known floral meristem and organ identity mutants. In Antirrhinum and Arabidopsis, mutations in the floral meristem identity gene FLORICAULA/LEAFY (FLO/LFY) affect flower development alone, whereas the tobacco FLO/LFY homologue, NFL, is expressed in vegetative tissues, suggesting that NFL specifies determinacy in the progenitor cells for both flowers and leaves. In this paper, we characterised the pea homologue of FLO/LFY. Results The pea cDNA homologue of FLO/LFY, PEAFLO, mapped to the uni locus in recombinant-inbred mapping populations and markers based on PEAFLO cosegregated with uni in segregating sibling populations. The characterisation of two spontaneous uni mutant alleles, one containing a deletion and the other a point mutation in the PEAFLO coding sequences, predicted that PEAFLO corresponds to UNI and that the mutant vegetative phenotype was conferred by the defective PEAFLO gene. Conclusions The uni mutant demonstrates that there are shared regulatory processes in the morphogenesis of leaves and flowers and that floral meristem identity genes have an extended role in plant development. Pleiotropic regulatory genes such as UNI support the hypothesis that leaves and flowers derive from a common ancestral sporophyll-like structure. The regulation of indeterminacy during leaf and flower morphogenesis by UNI may reflect a primitive function for the gene in the pre-angiosperm era.
Resumo:
Background Radiographic examinations of the ankle are important in the clinical management of ankle injuries in hospital emergency departments. National (Australian) Emergency Access Targets (NEAT) stipulate that 90 percent of presentations should leave the emergency department within 4 hours. For a radiological report to have clinical usefulness and relevance to clinical teams treating patients with ankle injuries in emergency departments, the report would need to be prepared and available to the clinical team within the NEAT 4 hour timeframe; before the patient has left the emergency department. However, little is known about the demand profile of ankle injuries requiring radiographic examination or time until radiological reports are available for this clinical group in Australian public hospital emergency settings. Methods This study utilised a prospective cohort of consecutive cases of ankle examinations from patients (n=437) with suspected traumatic ankle injuries presenting to the emergency department of a tertiary hospital facility. Time stamps from the hospital Picture Archiving and Communication System were used to record the timing of three processing milestones for each patient's radiographic examination; the time of image acquisition, time of a provisional radiological report being made available for viewing by referring clinical teams, and time of final verification of radiological report. Results Radiological reports and all three time stamps were available for 431 (98.6%) cases and were included in analysis. The total time between image acquisition and final radiological report verification exceeded 4?hours for 404 (92.5%) cases. The peak demand for radiographic examination of ankles was on weekend days, and in the afternoon and evening. The majority of examinations were provisionally reported and verified during weekday daytime shift hours. Conclusions Provisional or final radiological reports were frequently not available within 4 hours of image acquisition among this sample. Effective and cost-efficient strategies to improve the support provided to referring clinical teams from medical imaging departments may enhance emergency care interventions for people presenting to emergency departments with ankle injuries; particularly those with imaging findings that may be challenging for junior clinical staff to interpret without a definitive radiological report.
Resumo:
Introduction Radiographer abnormality detection systems that highlight abnormalities on trauma radiographs (‘red dot’ system) have been operating for more than 30 years. Recently, a number of pitfalls have been identified. These limitations initiated the evolution of a radiographer commenting system, whereby a radiographer provides a brief description of abnormalities identified in emergency healthcare settings. This study investigated radiographers' participation in abnormality detection systems, their perceptions of benefits, barriers and enablers to radiographer commenting, and perceptions of potential radiographer image interpretation services for emergency settings. Methods A cross-sectional survey was implemented. Participants included radiographers from four metropolitan hospitals in Queensland, Australia. Conventional descriptive statistics, histograms and thematic analysis were undertaken. Results Seventy-three surveys were completed and included in the analysis (68% response rate); 30 (41%) of respondents reported participating in abnormality detection in 20% or less of examinations, and 26(36%) reported participating in 80% or more of examinations. Five overarching perceived benefits of radiographer commenting were identified: assisting multidisciplinary teams, patient care, radiographer ability, professional benefits and quality of imaging. Frequently reported perceived barriers included ‘difficulty accessing image interpretation education’, ‘lack of time’ and ‘low confidence in interpreting radiographs’. Perceived enablers included ‘access to image interpretation education’ and ‘support from radiologist colleagues’. Conclusions A range of factors are likely to contribute to the successful implementation of radiographer commenting in addition to abnormality detection in emergency settings. Effective image interpretation education amenable to completion by radiographers would likely prove valuable in preparing radiographers for participation in abnormality detection and commenting systems in emergency settings.
Resumo:
In this chapter, we examine the psychological impact that organisational citizenship behaviours (OCBs) have on individuals performing them. OCB is discretionary employee behaviour that is not systematically rewarded by employers, but that contributes to overall organisational effectiveness (Organ, 1988). In a sample of schoolteachers, we predicted that performing OCBs would differentially impact two dimensions of psychological burnout -personal accomplishment (PA} and emotional exhaustion (EE). Due to the volitional nature of OCB, there are theoretical reasons to suppose that OCB enhances PA. However, it is also possible that certain OCBs constitute increased workload, thereby contributing to a heightened sense of EE. In addition, given prior research showing that non-material rewards such as praise and recognition, lead to positive employee outcomes, we proposed that praise and recognition would strengthen the relationship between OCB and PA, and weaken the relationship between OCB and EE.
Human breast cancer cell metastasis to long bone and soft organs of nude mice : a quantitative assay
Resumo:
Bone is a common metastatic site in human breast cancer (HBC). Since bone metastasis occurs very rarely from current spontaneous or experimental metastasis models of HBC cells in nude mice, an arterial seeding model involving the direct injection of the cells into the left ventricle has been developed to better understand the mechanisms involved in this process. We present here a sensitive polymerase chain reaction (PCR) method to detect and quantitate bone and soft organ metastasis in nude mice which have been intracardially inoculated with Lac Z transduced HBC cells. Amplification of genomically incorporated Lac Z sequences in MDA-MB-231-BAG HBC cells enables us to specifically detect these cells in mouse organs and bones. We have also created a competitive template to use as an internal standard in the PCR reactions, allowing us to better quantitate levels of HBC metastasis. The results of this PCR detection method correlate well with cell culture detection from alternate long bones from the same mice, and are more sensitive than gross Lac Z staining with X-gal or routine histology. Comparable qualitative results were obtained with PCR and culture in a titration experiment in which mice were inoculated with increasing numbers of cells, but PCR is more quantifiable, less time consuming, and less expensive. This assay can be employed to study the molecular and cellular aspects of bone metastasis, and could easily be used in conjunction with RT-PCR-based analyses of gene products which may be involved with HBC metastasis.
Resumo:
Orthotopic or intracardiac injection of human breast cancer cell lines into immunocompromised mice allows study of the molecular basis of breast cancer metastasis. We have established a quantitative real-time PCR approach to analyze metastatic spread of human breast cancer cells inoculated into nude mice via these routes. We employed MDA-MB-231 human breast cancer cells genetically tagged with a bacterial β-galactosidase (Lac-Z) retroviral vector, enabling their detection by TaqMan® real-time PCR. PCR detection was linear, specific, more sensitive than conventional PCR, and could be used to directly quantitate metastatic burden in bone and soft organs. Attesting to the sensitivity and specificity of the PCR detection strategy, as few as several hundred metastatic MDA-MB-231 cells were detectable in 100 μm segments of paraffin-embedded lung tissue, and only in samples adjacent to sections that scored positive by histological detection. Moreover, the measured real-time PCR metastatic burden in the bone environment (mouse hind-limbs, n = 48) displayed a high correlation to the degree of osteolytic damage observed by high resolution X-ray analysis (r2 = 0.972). Such a direct linear relationship to tumor burden and bone damage substantiates the so-called 'vicious cycle' hypothesis in which metastatic tumor cells promote the release of factors from the bone which continue to stimulate the tumor cells. The technique provides a useful tool for molecular and cellular analysis of human breast cancer metastasis to bone and soft organs, can easily be extended to other cell/marker/organ systems, and should also find application in preclinical assessment of anti-metastatic modalities.
Resumo:
This 2nd special edition of Cells Tissues Organs on epithelial-mesenchymal transitions (EMT) stems from the 2nd International Conference on EMT, which was convened by Shoukat Dedhar and Raghu Kalluri on October 1–3, 2005, in Vancouver, B.C., Canada. EMT – the transformation of epithelial cells which are usually arranged in a coherent layer and sessile, into more individualistic and motile cells, mesenchymal cells – is well recognized as an important primary mechanism in embryogenesis for remodeling tissues, as is the reverse transition. This has obvious implications in numerous pathophysiologies, and in particular EMT has emerged as an important feature of fibrosis in a growing number of organ types. It is now clear that about a third of the fibroblasts in the setting of organ fibrosis are likely derived from the epithelium. Cancer EMT remains topical, and although EMT has been reported in many cancer studies, this meeting was held against a backdrop of controversy in the cancer community as to the prevalence of EMT in clinical scenarios [Tarin et al.: Cancer Res 2005;65:5996–6000; Thompson et al.: Cancer Res 2005;65:5991–5995]...
Resumo:
Recreating an environment that supports and promotes fundamental homeostatic mechanisms is a significant challenge in tissue engineering. Optimizing cell survival, proliferation, differentiation, apoptosis and angiogenesis, and providing suitable stromal support and signalling cues are keys to successfully generating clinically useful tissues. Interestingly, those components are often subverted in the cancer setting, where aberrant angiogenesis, cellular proliferation, cell signalling and resistance to apoptosis drive malignant growth. In contrast to tissue engineering, identifying and inhibiting those pathways is a major challenge in cancer research. The recent discovery of adult tissue-specific stem cells has had a major impact on both tissue engineering and cancer research. The unique properties of these cells and their role in tissue and organ repair and regeneration hold great potential for engineering tissue-specific constructs. The emerging body of evidence implicating stem cells and progenitor cells as the source of oncogenic transformation prompts caution when using these cells for tissue-engineering purposes. While tissue engineering and cancer research may be considered as opposed fields of research with regard to their proclaimed goals, the compelling overlap in fundamental pathways underlying these processes suggests that cross-disciplinary research will benefit both fields. In this review article, tissue engineering and cancer research are brought together and explored with regard to discoveries that may be of mutual benefit.
Resumo:
We investigated the effects of the matrix metalloproteinase 13 (MMP13)-selective inhibitor, 5-(4-{4-[4-(4-fluorophenyl)-1,3-oxazol-2-yl]phenoxy}phenoxy)-5-(2-methoxyethyl) pyrimidine-2,4,6(1H,3H,5H)-trione (Cmpd-1), on the primary tumor growth and breast cancer-associated bone remodeling using xenograft and syngeneic mouse models. We used human breast cancer MDA-MB-231 cells inoculated into the mammary fat pad and left ventricle of BALB/c Nu/Nu mice, respectively, and spontaneously metastasizing 4T1.2-Luc mouse mammary cells inoculated into mammary fat pad of BALB/c mice. In a prevention setting, treatment with Cmpd-1 markedly delayed the growth of primary tumors in both models, and reduced the onset and severity of osteolytic lesions in the MDA-MB-231 intracardiac model. Intervention treatment with Cmpd-1 on established MDA-MB-231 primary tumors also significantly inhibited subsequent growth. In contrast, no effects of Cmpd-1 were observed on soft organ metastatic burden following intracardiac or mammary fat pad inoculations of MDA-MB-231 and 4T1.2-Luc cells respectively. MMP13 immunostaining of clinical primary breast tumors and experimental mice tumors revealed intra-tumoral and stromal expression in most tumors, and vasculature expression in all. MMP13 was also detected in osteoblasts in clinical samples of breast-to-bone metastases. The data suggest that MMP13-selective inhibitors, which lack musculoskeletal side effects, may have therapeutic potential both in primary breast cancer and cancer-induced bone osteolysis.
Resumo:
As yet, there is no cure for metastatic breast cancer. Historically, considerable research effort has been concentrated on understanding the processes of metastasis, how a primary tumour locally invades and systemically disseminates using the phenotypic switching mechanism of epithelial to mesenchymal transition (EMT); however, much less is understood about how metastases are then formed. Breast cancer metastases often look (and may even function) as 'normal' breast tissue, a bizarre observation against the backdrop of the organ structure of the lung, liver, bone or brain. Mesenchymal to epithelial transition (MET), the opposite of EMT, has been proposed as a mechanism for establishment of the metastatic neoplasm, leading to questions such as: Can MET be clearly demonstrated in vivo? What factors cause this phenotypic switch within the cancer cell? Are these signals/factors derived from the metastatic site (soil) or expressed by the cancer cells themselves (seed)? How do the cancer cells then grow into a detectable secondary tumour and further disseminate? And finallyCan we design and develop therapies that may combat this dissemination switch? This review aims to address these important questions by evaluating long-standing paradigms and novel emerging concepts in the field of epithelial mesencyhmal plasticity.
Resumo:
Infection with erbB-2 (E) of Ha-ras (H) oncogene-transfected cells has been previously shown to cooperatively induce anchorage-independent growth of the MCF10A human mammary epithelial cell line in vitro, but not to induce nude mouse tumorigenicity. Here we show that oncogene-transformed MCF10A are able to halt in the lungs of nude mice, a sign of organ colonization potential. We have therefore studied the transformants for in vitro migratory and invasive properties known to correlate with the metastatic potential of human mammary carcinoma cells in nude mice. MCF10A transfected with Ha-ras, infected with a recombinant retroviral vector containing the human c-erB-2 proto-oncogene (MCF10A-HE cells), show a higher invasive index than either the single transfectant (MCF10A-H) or MCF10A-erB-2(MCF10A-E) cells in the Boyden chamber chemotaxis and chemoinvasion assays. The MCF10A-HE cells also adopted an invasive stellate growth pattern when plated or embedded in Matrigel, in contrast to the spherical colonies formed by the single transformants MCF10A-H, MCF10A-E, and the parental cells. Dot-blot analysis of gelatinase A and TIMP-2 mRNA levels revealed increasing gelatinase A mRNA levels (HE > E > H > MCF10A) and reduced TIMP-2 expression in both single and double transformants. Furthermore, MCF10A-HE cells show more MMP-2 activity than parental MCF10A cells or the single transformants. CD44 analysis revealed differential isoform banding for the MCF10A-HE cells compared to parental cells, MCF10A-H and MCF10A-E, accompanied by increased binding of hyaluronan by the double transformants. Our results indicate that erB-2 and Ha-ras co-expression can induce a more aggressive phenotype in vitro, representative of the malignancy of mammary carcinomas.
Resumo:
This study uses information based on published ATO material and represents the extent of tax-deductible donations made and claimed by Australian individual taxpayers (i.e. not including corporate entities or trusts) to DGRs, at Item D9 Gifts or Donations, in their income tax returns for the 2011-12 income year. The total amount claimed as tax-deductible donations in 2011-12 was $2.24 billion (compared to $2.21 billion in 2010-11), representing 6.85% of all personal taxpayer deductions. Since 1978-79, the actual total tax-deductible donations claimed by Australian individual taxpayers has outpaced inflation-adjusted total tax-deductible donations, measured against the Consumer Price Index. The average tax-deductible donation claimed in 2011-12 increased to $494.25, but the absolute number and percentage of taxpayers claiming donations dropped (to 4.54 million or 35.62%). Analysis is given of individual taxpayers' donation claiming by Gender, State of Residence, Postcode, Income Band, Industry of employment, and Occupation.