968 resultados para ocean acidification


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coccolithophores are an important component of the Earth system, and, as calcifiers, their possible susceptibility to ocean acidification is of major concern. Laboratory studies at enhanced pCO2 levels have produced divergent results without overall consensus. However, it has been predicted from these studies that, although calcification may not be depressed in all species, acidification will produce "a transition in dominance from more to less heavily calcified coccolithophores" [Ridgwell A, et al., (2009) Biogeosciences 6:2611-2623]. A recent observational study [Beaufort L, et al., (2011) Nature 476:80-83] also suggested that coccolithophores are less calcified in more acidic conditions. We present the results of a large observational study of coccolithophore morphology in the Bay of Biscay. Samples were collected once a month for over a year, along a 1,000-km-long transect. Our data clearly show that there is a pronounced seasonality in the morphotypes of Emiliania huxleyi, the most abundant coccolithophore species. Whereas pH and CaCO3 saturation are lowest in winter, the E. huxleyi population shifts from <10% (summer) to >90% (winter) of the heavily calcified form. However, it is unlikely that the shifts in carbonate chemistry alone caused the morphotype shift. Our finding that the most heavily calcified morphotype dominates when conditions are most acidic is contrary to the earlier predictions and raises further questions about the fate of coccolithophores in a high-CO2 world.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The emergence of ocean acidification as a significant threat to calcifying organisms in marine ecosystems creates a pressing need to understand the physiological and molecular mechanisms by which calcification is affected by environmental parameters. We report here, for the first time, changes in gene expression induced by variations in pH/pCO2 in the widespread and abundant coccolithophore Emiliania huxleyi. Batch cultures were subjected to increased partial pressure of CO2 (pCO2; i.e. decreased pH), and the changes in expression of four functional gene classes directly or indirectly related to calcification were investigated. Increased pCO2 did not affect the calcification rate and only carbonic anhydrase transcripts exhibited a significant down-regulation. Our observation that elevated pCO2 induces only limited changes in the transcription of several transporters of calcium and bicarbonate gives new significant elements to understand cellular mechanisms underlying the early response of E. huxleyi to CO2-driven ocean acidification.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Warming seawater temperatures and ocean acidification on the coastal western Antarctic Peninsula pose unique challenges to stenothermal marine invertebrates. The present study examines prospective sub-lethal effects of elevated temperature, pCO2, and resultant decrease in seawater pH, on righting behavior and maximal escape speeds for two common gastropods, the limpet Nacella concinna (Strebel) and mesogastropod snail Margarella antarctica (Lamy). Replicate individuals held in individual containers were exposed to four combinations of seawater temperature (1.5 °C-current average, 3.5 °C-projected average by 2100) and pH (pH 8.0-current average, pH 7.8-projected average by 2100 as a result of elevated pCO2 levels) for a period of 6 weeks. Following this chronic exposure, righting behavior, determined for the limpets as proportion to right over 24 h and for snails as time to right, as well as maximum escape speed following contact with a sea star predator were measured. We found no significant differences in proportions of limpets displaying the capacity to right among the four temperature-pH treatments. However, there was a significant temperature-pH interaction effect for mean righting times in snails, indicating that the effect of pH on the time to right is dependent on temperature. We found no significant effects of temperature or pH on mean maximal escape speed in limpets. Additionally, we observed a significant temperature-pH interaction effect for mean maximal escape speed in snails. These interactive effects make it difficult to make clear predictions about how these environmental factors may impact behavioral responses.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The decline in ocean water pH and changes in carbonate saturation states through anthropogenically mediated increases in atmospheric CO2 levels may pose a hazard to marine organisms. This may be particularly acute for those species reliant on calcareous structures like shells and exoskeletons. This is of particular concern in the case of valuable commercially exploited species such as the king scallop, Pecten maximus. In this study we investigated the effects on oxygen consumption, clearance rates and cellular turnover in juvenile P. maximus following 3 months laboratory exposure to four pCO2 treatments (290, 380, 750 and 1140 µatm). None of the exposure levels were found to have significant effect on the clearance rates, respiration rates, condition index or cellular turnover (RNA: DNA) of individuals. While it is clear that some life stages of marine bivalves appear susceptible to future levels of ocean acidification, particularly under food limiting conditions, the results from this study suggest that where food is in abundance, bivalves like juvenile P. maximus may display a tolerance to limited changes in seawater chemistry.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This study has examined the effect of low seawater pH values (induced by an increased CO2 partial pressure) on the rates of photosynthesis, as well as on the carbon budget and carbon translocation in the scleractinian coral species Stylophora pistillata, using a new model based on 13C labelling of the photosynthetic products. Symbiont photosynthesis contributes to a large part of the carbon acquisition in tropical coral species, and it is thus important to know how environmental changes affect this carbon acquisition and allocation. For this purpose, nubbins of S. pistillata were maintained for six months at two pHTs (8.1 and 7.2, by bubbling seawater with CO2). The lowest pH value was used to tackle how seawater pH impacts the carbon budget of a scleractinian coral. Rates of photosynthesis and respiration of the symbiotic association and of isolated symbionts were assessed at each pH. The fate of 13C photosynthates was then followed in the symbionts and the coral host for 48 h. Nubbins maintained at pHT 7.2 presented a lower areal symbiont concentration, and lower areal rates of gross photosynthesis and carbon incorporation compared to nubbins maintained at pHT 8.1. The total carbon acquisition was thus lower under low pH. However, the total percentage of carbon translocated to the host as well as the amount of carbon translocated per symbiont cell were significantly higher under pHT 7.2 than under pHT 8.1 (70% at pHT 7.2 vs. 60% at pHT 8.1), such that the total amount of photosynthetic carbon received by the coral host was equivalent under both pHs (5.5 to 6.1 µg C/cm**2/h). Although the carbon budget of the host was unchanged, symbionts acquired less carbon for their own needs (0.6 compared to 1.8 µg C/cm**2/h), explaining the overall decrease in symbiont concentration at low pH. In the long term, such decrease in symbiont concentration might severely affect the carbon budget of the symbiotic association.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Ocean acidification is predicted to affect marine ecosystems in many ways, including modification of fish behaviour. Previous studies have identified effects of CO2-enriched conditions on the sensory behaviour of fishes, including the loss of natural responses to odours resulting in ecologically deleterious decisions. Many fishes also rely on hearing for orientation, habitat selection, predator avoidance and communication. We used an auditory choice chamber to study the influence of CO2-enriched conditions on directional responses of juvenile clownfish (Amphiprion percula) to daytime reef noise. Rearing and test conditions were based on Intergovernmental Panel on Climate Change predictions for the twenty-first century: current-day ambient, 600, 700 and 900 µatm pCO2. Juveniles from ambient CO2-conditions significantly avoided the reef noise, as expected, but this behaviour was absent in juveniles from CO2-enriched conditions. This study provides, to our knowledge, the first evidence that ocean acidification affects the auditory response of fishes, with potentially detrimental impacts on early survival.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The effects of ocean acidification and increased temperature on physiology of six strains of the polar diatom Fragilariopsis cylindrus from Greenland were investigated. Experiments were performed under manipulated pH levels (8.0, 7.7, 7.4, and 7.1) and different temperatures (1, 5, and 8 °C) to simulate changes from present to plausible future levels. Each of the 12 scenarios was run for 7 days, and a significant interaction between temperature and pH on growth was detected. By combining increased temperature and acidification, the two factors counterbalanced each other, and therefore no effect on the growth rates was found. However, the growth rates increased with elevated temperatures by 20-50% depending on the strain. In addition, a general negative effect of increasing acidification on growth was observed. At pH 7.7 and 7.4, the growth response varied considerably among strains. However, a more uniform response was detected at pH 7.1 with most of the strains exhibiting reduced growth rates by 20-37% compared to pH 8.0. It should be emphasized that a significant interaction between temperature and pH was found, meaning that the combination of the two parameters affected growth differently than when considering one at a time. Based on these results, we anticipate that the polar diatom F. cylindrus will be unaffected by changes in temperature and pH within the range expected by the end of the century. In each simulated scenario, the variation in growth rates among the strains was larger than the variation observed due to the whole range of changes in either pH or temperature. Climate change may therefore not affect the species as such, but may lead to changes in the population structure of the species, with the strains exhibiting high phenotypic plasticity, in terms of temperature and pH tolerance towards future conditions, dominating the population.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Sodium hypochlorite (NaOCl) is widely used to disinfect seawater in power plant cooling systems in order to reduce biofouling, and in ballast water treatment systems to prevent transport of exotic marine species. While the toxicity of NaOCl is expected to increase by ongoing ocean acidification, and many experimental studies have shown how algal calcification, photosynthesis and growth respond to ocean acidification, no studies have investigated the relationship between NaOCl toxicity and increased CO2. Therefore, we investigated whether the impacts of NaOCl on survival, chlorophyll a (Chl-a), and effective quantum yield in three marine phytoplankton belonging to different taxonomic classes are increased under high CO2 levels. Our results show that all biological parameters of the three species decreased under increasing NaOCl concentration, but increasing CO2 concentration alone (from 450 to 715 µatm) had no effect on any of these parameters in the organisms. However, due to the synergistic effects between NaOCl and CO2, the survival and Chl-a content in two of the species, Thalassiosira eccentrica and Heterosigma akashiwo, were significantly reduced under high CO2 when NaOCl was also elevated. The results show that combined exposure to high CO2 and NaOCl results in increasing toxicity of NaOCl in some marine phytoplankton. Consequently, greater caution with use of NaOCl will be required, as its use is widespread in coastal waters.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We studied the effects of elevated CO2 concentration and seawater acidity on inorganic carbon acquisition, photoinhibition and photoprotection as well as growth and respiration in the marine diatom Thalassiosira pseudonana. After having grown under the elevated CO2 level (1000 µatm, pH 7.83) at sub-saturating photosynthetically active radiation (PAR, 75 µmol photons/m**2/s) for 20 generations, photosynthesis and dark respiration of the alga increased by 25% (14.69 ± 2.55 fmol C/cell/h) and by 35% (4.42 ± 0.98 fmol O2/cell/h), respectively, compared to that grown under the ambient CO2 level (390 µatm, pH 8.16), leading to insignificant effects on growth (1.09 ± 0.08 (1/d))v 1.04 ± 0.07 (1/d)). The photosynthetic affinity for CO2 was lowered in the high-CO2 grown cells, reflecting a down-regulation of the CO2 concentrating mechanism (CCM). When exposed to an excessively high level of PAR, photochemical and non-photochemical quenching responded similarly in the low- and high-CO2 grown cells, reflecting that photoinhibition was not influenced by the enriched level of CO2. In T. pseudonana, it appeared that the energy saved due to the down-regulated CCM did not contribute to any additional light stress as previously found in another diatom Phaeodactylum tricornutum, indicating differential physiological responses to ocean acidification between these two diatom species.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Mixing of seawater subjects phytoplankton to fluctuations in photosynthetically active radiation (400-700 nm) and ultraviolet radiation (UVR; 280-400 nm). These irradiance fluctuations are now superimposed upon ocean acidification and thinning of the upper mixing layer through stratification, which alters mixing regimes. Therefore, we examined the photosynthetic carbon fixation and photochemical performance of a coccolithophore, Gephyrocapsa oceanica, grown under high, future (1,000 µatm) and low, current (390 µatm) CO2 levels, under regimes of fluctuating irradiances with or without UVR. Under both CO2 levels, fluctuating irradiances, as compared with constant irradiance, led to lower nonphotochemical quenching and less UVR-induced inhibition of carbon fixation and photosystem II electron transport. The cells grown under high CO2 showed a lower photosynthetic carbon fixation rate but lower nonphotochemical quenching and less ultraviolet B (280-315 nm)-induced inhibition. Ultraviolet A (315-400 nm) led to less enhancement of the photosynthetic carbon fixation in the high-CO2-grown cells under fluctuating irradiance. Our data suggest that ocean acidification and fast mixing or fluctuation of solar radiation will act synergistically to lower carbon fixation by G. oceanica, although ocean acidification may decrease ultraviolet B-related photochemical inhibition.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The response of Emiliania huxleyi (Lohmann) W. W. Hay et H. Mohler, Calcidiscus leptoporus (G. Murray et V. H. Blackman) J. Schiller, andSyracosphaera pulchra Lohmann to elevated partial pressure of carbon dioxide (pCO2) was investigated in batch cultures. We reported on the response of both haploid and diploid life stages of these three species. Growth rate, cell size, particulate inorganic carbon (PIC), and particulate organic carbon (POC) of both life stages were measured at two different pCO2 (400 and 760 parts per million [ppm]), and their organic and inorganic carbon production were calculated. The two life stages within the same species generally exhibited a similar response to elevated pCO2, the response of the haploid stage being often more pronounced than that of the diploid stage. The growth rate was consistently higher at elevated pCO2, but the response of other processes varied among species. Calcification rate of C. leptoporusand of S. pulchra did not change at elevated pCO2, whereas it increased in E. huxleyi. POC production and cell size of both life stages of S. pulchra and of the haploid stage of E. huxleyi markedly decreased at elevated pCO2. It remained unaltered in the diploid stage of E. huxleyi and C. leptoporus and increased in the haploid stage of the latter. The PIC:POC ratio increased in E. huxleyi and was constant in C. leptoporus and S. pulchra. Elevated pCO2 has a significant effect on these three coccolithophore species, the haploid stage being more sensitive. This effect must be taken into account when predicting the fate of coccolithophores in the future ocean.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The effects of CO2-induced seawater acidification on plankton communities were also addressed in a series of 3 mesocosm experiments, called the Pelagic Ecosystem CO2 Enrichment (PeECE I-III) studies, which were conducted in the Large-Scale Mesocosm Facilities of the University of Bergen, Norway in 2001, 2003 and 2005, respectively. Each experiment consisted of 9 mesocosms, in which CO2 was manipulated to initial concentrations of 190, 350 and 750 µatm in 2001 and 2003, and 350, 700 and 1050 µatm in 2005. The present dataset concerns PeECE I.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The response of Emiliania huxleyi (Lohmann), Calcidiscus leptoporus (Murray and Blackman), and Syracosphaera pulchra (Lohmann) to elevated partial pressure of carbon dioxide (pCO2) was investigated in batch cultures. For the first time, we reported on the response of the non-calcifying (haploid) life stage of these three species. Growth rate, cell size, particulate inorganic (PIC) and particulate organic carbon (POC) of both life stages were measured at two different pCO2 (400 and 760 ppm) and their organic and inorganic carbon production calculated. The two life stages within the same species generally exhibited a similar response to elevated pCO2, the response of the haploid stage being often more pronounced than that of the diploid stage. The growth rate was consistently higher at elevated pCO2 but the response of other processes varied among species. Calcification rate of C. leptoporus and of S. pulchra did not change at elevated pCO2 while it increased in E. huxleyi. Particulate organic carbon production and cell size of both life stages of S. pulchra and of the haploid stage of E. huxleyi markedly decreased at elevated pCO2. It remained unaltered in the diploid stage of E. huxleyi and C. leptoporus and increased in the haploid stage of the latter. The PIC:POC ratio increased in E. huxleyi and was constant in C. leptoporus and S. pulchra. Elevated pCO2 has a significant effect on these three coccolithophores species, the haploid stage being more sensitive. This must be taken into account when predicting the fate of coccolithophores in the future ocean.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This study demonstrated that the increased partial pressure of CO2 (pCO2) in seawater and the attendant acidification that are projected to occur by the year 2300 will severely impact the early development of the oyster Crassostrea gigas. Eggs of the oyster were artificially fertilized and incubated for 48 h in seawater acidified to pH 7.4 by equilibrating it with CO2-enriched air (CO2 group), and the larval morphology and degree of shell mineralization were compared with the control treatment (air-equilibrated seawater). Only 5% of the CO2 group developed into normal 'D-shaped' veliger larvae as compared with 68% in the control group, although no difference was observed between the groups up to the trochophore stage. Thus, during embryogenesis, the calcification process appears to be particularly affected by low pH and/or the low CaCO3 saturation state of high-CO2 seawater. Veliger larvae with fully mineralized shells accounted for 30% of the CO2-group larvae, compared with 72% in the control (p < 0.005). Shell mineralization was completely inhibited in 45% of the CO2-group larvae, but only in 16% of the control (p < 0.05). Normal D-shaped veligers of the control group exhibited increased shell length and height between 24 and 48 h after fertilization, while the few D-shaped veligers of the CO2 group showed no shell growth during the same period. Our results suggest that future ocean acidification will have deleterious impacts on the early development of marine benthic calcifying organisms.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Increasing pCO2 (partial pressure of CO2 ) in an "acidified" ocean will affect phytoplankton community structure, but manipulation experiments with assemblages briefly acclimated to simulated future conditions may not accurately predict the long-term evolutionary shifts that could affect inter-specific competitive success. We assessed community structure changes in a natural mixed dinoflagellate bloom incubated at three pCO2 levels (230, 433, and 765 ppm) in a short-term experiment (2 weeks). The four dominant species were then isolated from each treatment into clonal cultures, and maintained at all three pCO2 levels for approximately 1 year. Periodically (4, 8, and 12 months), these pCO2 -conditioned clones were recombined into artificial communities, and allowed to compete at their conditioning pCO2 level or at higher and lower levels. The dominant species in these artificial communities of CO2 -conditioned clones differed from those in the original short-term experiment, but individual species relative abundance trends across pCO2 treatments were often similar. Specific growth rates showed no strong evidence for fitness increases attributable to conditioning pCO2 level. Although pCO2 significantly structured our experimental communities, conditioning time and biotic interactions like mixotrophy also had major roles in determining competitive outcomes. New methods of carrying out extended mixed species experiments are needed to accurately predict future long-term phytoplankton community responses to changing pCO2 .