994 resultados para multi-wire welding
Resumo:
The objective of this thesis work is to develop and study the Differential Evolution Algorithm for multi-objective optimization with constraints. Differential Evolution is an evolutionary algorithm that has gained in popularity because of its simplicity and good observed performance. Multi-objective evolutionary algorithms have become popular since they are able to produce a set of compromise solutions during the search process to approximate the Pareto-optimal front. The starting point for this thesis was an idea how Differential Evolution, with simple changes, could be extended for optimization with multiple constraints and objectives. This approach is implemented, experimentally studied, and further developed in the work. Development and study concentrates on the multi-objective optimization aspect. The main outcomes of the work are versions of a method called Generalized Differential Evolution. The versions aim to improve the performance of the method in multi-objective optimization. A diversity preservation technique that is effective and efficient compared to previous diversity preservation techniques is developed. The thesis also studies the influence of control parameters of Differential Evolution in multi-objective optimization. Proposals for initial control parameter value selection are given. Overall, the work contributes to the diversity preservation of solutions in multi-objective optimization.
Resumo:
Diplomityössä tavoitteena oli tutkia kapearailojauhekaaritekniikan soveltuvuutta konepajakäyttöön ja sen vaikutusta hitsauksen tuottavuuteen sekä hitsin mekaanisiin ominaisuuksiin. Työ tehtiin vertailukokeilla, jossa koehitsaukset suoritettiin eri aineenpaksuuksille siten, että jokaiselle tutkimuksen kohteena olleelle materiaalille tehtiin yksi hitsaus käytössä olevalla jauhekaaritekniikalla, jolloin saatiin vertailukohde, johon uutta kapearailotekniikkaa verrattiin. Tulokset osoittivat, että kapearailotekniikalla 1 palko/palkokerros aineenpaksuudeltaan Pl. 60 mm koekappale saatiin hitsattua n. 39 % nopeammin verrattuna perinteiseen tandem -hitsaukseen. Kyseisellä aineenpaksuudella lisäainelangan kulutus oli n. 41 % ja jauheen kulutus n. 71 % pienempi verrattuna perinteiseen X- railohitsaukseen tandem -menetelmällä. Lisäksi tuli esille, että ”palkoa palonpäälle” -tekniikka on kapearailotekniikoista tehokkain, sillä 2 palkoa/palkokerros menetelmässä railon leveyttä jouduttiin leventämään, jolloin kapearailotekniikan pieni railotilavuus menetettiin. Lisäaineen kulutus tälläkin menetelmällä jäi pienemmäksi verrattuna X- railohitsaukseen. Ennalta pelättyä kuonan irtoamisongelmaa ei kapearailohitsauksessa havaittu, vaan kuona irtosi ongelmitta railon kyljistä. Lisäksi kapearailotekniikalla hitsattujen hitsien lujuudet olivat vertailukelpoiset tandem- ja yksilankamenetelmällä hitsattujen hitsien kanssa.
Resumo:
Rapid depletion of easy-to-access fossil fuel, predominantly, oil and gas resources has now necessitated increase in need to develop new oil and gas sources in ever more remote and hostile environments. This is necessary in order to explore more oil and gas resources to meet rapidly rising long-term energy demand in the world, both at present and in the nearest future. Arctic is one of these harsh environments, where enormous oil and gas resources are available, containing about 20% of the world total oil and gas, but the environmental conditions are very harsh and hostile. However, virtually all the facilities required for the exploration and development of this new energy source are constructed with metals as well as their alloys and are predominantly joined together by welding processes and technologies. Meanwhile, due to entirely different environment from the usual moderate temperate region, conventional welding technologies, common metals and their alloys cannot be applied as this Arctic environment demand metals structures with very high toughness and strength properties under extremely low temperature. This is due to the fact that metals transit from ductility to brittleness as the temperature moves toward extreme negative values. Hence, this research work investigates and presents the advanced welding technologies applicable to Arctic metal structures which can give satisfactory weldments under active Arctic service conditions. .
Resumo:
Fraud is an increasing phenomenon as shown in many surveys carried out by leading international consulting companies in the last years. Despite the evolution of electronic payments and hacking techniques there is still a strong human component in fraud schemes. Conflict of interest in particular is the main contributing factor to the success of internal fraud. In such cases anomaly detection tools are not always the best instruments, since the fraud schemes are based on faking documents in a context dominated by lack of controls, and the perpetrators are those ones who should control possible irregularities. In the banking sector audit team experts can count only on their experience, whistle blowing and the reports sent by their inspectors. The Fraud Interactive Decision Expert System (FIDES), which is the core of this research, is a multi-agent system built to support auditors in evaluating suspicious behaviours and to speed up the evaluation process in order to detect or prevent fraud schemes. The system combines Think-map, Delphi method and Attack trees and it has been built around audit team experts and their needs. The output of FIDES is an attack tree, a tree-based diagram to ”systematically categorize the different ways in which a system can be attacked”. Once the attack tree is built, auditors can choose the path they perceive as more suitable and decide whether or not to start the investigation. The system is meant for use in the future to retrieve old cases in order to match them with new ones and find similarities. The retrieving features of the system will be useful to simplify the risk management phase, since similar countermeasures adopted for past cases might be useful for present ones. Even though FIDES has been built with the banking sector in mind, it can be applied in all those organisations, like insurance companies or public organizations, where anti-fraud activity is based on a central anti-fraud unit and a reporting system.
Resumo:
In ship and offshore terminal construction, welded cross sections are thick and the number of welds very high. Consequently, there are two aspects of great importance; cost and heat input. Reduction in the welding operation time decreases the costs of the work force and avoids excessive heat, preventing distortion and other weld defects. The need to increase productivity while using a single wire in the GMAW process has led to the use of a high current and voltage to improve the melting rate. Unfortunately, this also increases the heat input. Innovative GMAW processes, mostly implemented for sheet plate sections, have shown significant reduction in heat input (Q), low distortion and increase in welding speed. The aim of this study is to investigate adaptive pulsed GMAW processes and assess relevant applications in the high power range, considering possible benefits when welding thicker sections and high yield strength steel. The study experimentally tests the usability of adaptive welding processes and evaluates their effects on weld properties, penetration and shapes of the weld bead.The study first briefly reviews adaptive GMAW to evaluate different approaches and their applications and to identify benefits in adaptive pulsed. Experiments are then performed using Synergic Pulsed GMAW, WiseFusionTM and Synergic GMAW processes to weld a T-joint in a horizontal position (PB). The air gap between the parts ranges from 0 to 2.5 mm. The base materials are structural steel grade S355MC and filler material G3Si1. The experiment investigates heat input, mechanical properties and microstructure of the welded joint. Analysis of the literature reveals that different approaches have been suggested using advanced digital power sources with accurate waveform, current, voltage, and feedback control. In addition, studies have clearly indicated the efficiency of lower energy welding processes. Interest in the high power range is growing and a number of different approaches have been suggested. The welding experiments in this study reveal a significant reduction of heat input and a weld microstructure with the presence of acicular ferrite (AF) beneficial for resistance to crack propagation. The WiseFusion bead had higher dilution, due to the weld bead shape, and low defects. Adaptive pulse GMAW processes can be a favoured choice when welding structures with many welded joints. The total heat reduction mitigates residual stresses and the bead shape allows a higher amperage limit. The stability of the arc during the process is virtually spatter free and allows an increase in welding speed.
Resumo:
High strength steel (HSS) has been in use in workshops since the 1980s. At that time, the significance of the term HSS differed from the modern conception as the maximum yield strength of HSSs has increased nearly every year. There are three different ways to make HSS. The first and oldest method is QT (quenched and tempered) followed by the TMCP (thermomechanical controlled process) and DQ (direct quenching) methods. This thesis consists of two parts, the first of which part introduces the research topic and discusses welded HSS structures by characterizing the most important variables. In the second part of the thesis, the usability of welded HSS structures is examined through a set of laboratory tests. The results of this study explain the differences in the usability of the welded HSSs made by the three different methods. The results additionally indicate that usage of different HSSs in the welded structures presumes that manufacturers know what kind of HSS they are welding. As manufacturers use greater strength HSSs in welded structures, the demands for welding rise as well. Therefore, during the manufacturing process, factors such as heat input, cooling time, weld quality, and more must be under careful observation.
Resumo:
The objective of this thesis was to examine the potential of multi-axis solutions in packaging machines produced in Europe. The definition of a multi-axis solution in this study is a construction that uses a common DC bus power supply for different amplifiers running the axes and the intelligence is centralized into one unit. The cost structure of a packaging machine was gained from an automation research, which divided the machines according to automation categories. The automation categories were then further divided into different sub-components by evaluating the ratio of multi-axis solutions compared to other automation components in packaging machines. A global motion control study was used for further information. With the help of the ratio, an estimation of the potential of multi-axis solutions in each country and packaging machine sector was completed. In addition to the research, a specific questionnaire was sent to five companies to gain information about the present situation and possible trends in packaging machinery. The greatest potential markets are in Germany and Italy, which are also the largest producers of packaging machinery in Europe. The greatest growth in the next few years will be seen in Turkey where the annual growth rate equals the general machinery production rate in Asia. The greatest market potential of the Nordic countries is found in Sweden in 35th position on the list. According to the interviews, motion control products in packaging machines will retain their current power levels, as well as the number of axes in the future. Integrated machine safety features together with a universal programming language are the desired attributes of the future. Unlike generally in industry, the energy saving objectives are and will remain insignificant in the packaging industry.
Resumo:
More than ever, education organisations are experiencing the need to develop new services and processes to satisfy expanding and changing customer needs and to adapt to the environmental changes and continually tightening economic situation. Innovation has been found in many studies to have a crucial role in the success of an organisation, both in the private and public sectors, in formal education and in manufacturing and services alike. However, studies concerning innovation in non-formal adult education organisations, such as adult education centres (AECs) in Finland, are still lacking. This study investigates innovation in the non-formal adult education organisation context from the perspective of organisational culture types and social networks. The objective is to determine the significant characteristics of an innovative non-formal adult education organisation. The analysis is based on data from interviews with the principals and fulltime staff of four case AECs. Before the case study, a pre-study phase is accomplished in order to obtain a preliminary understanding of innovation at AECs. The research found strong support for the need of innovation in AECs. Innovation is basically needed to accomplish the AEC system’s primary mission mentioned in the ACT on Liberal Adult Education. In addition, innovation is regarded vital to institutes and may prevent their decline. It helps the institutes to be more attractive, to enter new market, to increase customer satisfaction and to be on the cutting edge. Innovation is also seen as a solution to the shortage of resources. Innovative AECs search actively for additional resources for development work through project funding and subsidies, cooperation networks and creating a conversational and joyful atmosphere in the institute. The findings also suggest that the culture type that supports innovation at AECs is multidimensional, with an emphasis on the clan and adhocratic culture types and such values as: dynamism, future orientation, acquiring new resources, mistake tolerance, openness, flexibility, customer orientation, a risk-taking attitude, and community spirit. Active and creative internal and external cooperation also promote innovation at AECs. This study also suggests that the behaviour of a principal is crucial. The way he or she shows appreciation the staff, encouragement and support to the staff and his or her approachability and concrete participation in innovation activities have a strong effect on innovation attitudes and activities in AECs.
Resumo:
A recent (November 2010) outbreak of infectious laryngotracheitis (ILT) in a multi-age laying hen facility in Minas Gerais state, Brazil, is described. Previous ILT outbreak in laying hens was only notified in São Paulo state, Brazil, in 2002. In the outbreak described here, the affected population was approximately eight million hens, with flock sizes ranging from 100,000 to 2,900,000 chickens. The average mortality ranged from 1 to 6%, and morbidity was around 90% (most of the twenty seven farms of the area were positive for ILT virus). Three multi-age laying farms from one company were selected for this report. Clinical signs included prostration, dyspnea, conjunctivitis, occasional swelling of the paranasal sinuses and bloody mucous nasal discharge. Severely affected chickens presented with dyspnea, gasping and became cyanotic before death. At necropsy, these chickens had fibrinous exudate blocking the larynx and the lumen of cranial part of the trachea. In addition, conjunctivitis with intense hyperemia, edema and sinuses with caseous exudate were present. On histopathology, there were marked necrosis and desquamation of respiratory ephitelium and conjunctiva with numerous syncytial cells formation and fibrinous exudate. Moderate to marked non suppurative (especially lymphocytes and plasma cells) infiltration in the lamina propria also was observed. Sixteen out of 20 examined chickens, eosinophilic intranuclear inclusion bodies were observed in the syncytial cells. The DNA extracted from larynx and trachea produced positive PCR results for ILT virus (ILTV) DNA using formalin-fixed, paraffin embedded (FFPE) samples. Amplicons from a small region of ICP4 gene were submitted to sequencing and showed 100% identity with ILTV EU104910.1 (USA strain), 99% with ILTV JN596963.1 (Australian strain) and 91% with ILTV JN580316.1 (Gallid herpesvirus 1 CEO vaccine strain) and JN580315.1 (Gallid herpesvirus 1 TCO vaccine strain).
Resumo:
Joining processes and techniques need to meet the trend of new applications and the development of new materials. The application in connection with thick and thin plates in industrial fields is wide and the joining technology is in very urgent need. The laser-TIG hybrid welding technology can play the respective advantages of both of them. One major advantage of the hybrid laser-TIG welding technology is its efficient use of laser energy. Additionally, it can develop into a high and new advanced welding technology and become a hot spot in both the application and research area. This thesis investigated laser –TIG hybrid welding with the aim of enlightening the reader on its advantages, disadvantages and future areas of improvement. The main objective is to investigate laser-TIG hybrid on the welding of various metals (steels, magnesium, aluminium etc.). In addition, it elaborates on various possible combinations on hybrid laser-TIG welding technology and their benefits. The possibility of using laser-TIG hybrid in welding of thick materials was investigated. The method applied in carrying out this research is by using literature review. The results showed that hybrid laser-TIG is applicable to almost all weldable metals. Also it proves to be effective in welding refractive metals. The possibility of welding with or without filler materials is of economic advantage especially in welding of materials with no filler material. Thick plate’s hybrid laser-TIG welding is showing great prospects although it normally finds its used in welding thin materials in the range of 0.4 to 0.8 mm. The findings show that laser-TIG hybrid welding can be a versatile welding process and therefore will be increasingly used industrially due to its numerous advantages and the development of new TIG arc that enhances its capabilities.
Resumo:
Diplomityössä tarkastellaan hitsaavan verkoston laadunhallintaa ja siinä ilmeneviä erilaisia ongelmakohtia. Tämän lisäksi työssä tarkastellaan kolmen eri laatutyökalun Lean, Six Sigma ja Total Welding Management soveltamista hitsaavan verkoston laadunhallinnassa. Teoriaosassa käsitellään sekä yleisesti että hitsauksen osalta laatua ja laadunhallintaa, sekä edellä mainittuja laatutyökaluja. Tutkimusosaan tietoja hitsaavista verkostoista kerättiin kaikkiaan kolmesta eri verkostosta. Näiden kerättyjen tietojen pohjalta tarkasteltiin valittujen laatutyökalujen soveltuvuutta verkostomaiseen käyttöön. Verkostoitunut toiminta aiheuttaa monia uusia haasteita yritysten laadunhallinnalle verrattuna yksittäisiin hitsaaviin yrityksiin. Suurimpia tutkimuksessa havaittuja ongelmakohtia ovat suunnittelun ja valmistuksen yhteistyön erilaiset puutteet, laatutasoon ja sen varmistukseen liittyvät asiat, sekä verkoston sisälle syntyvä niin sanottu hiljainen tieto ja sen häviäminen. Tutkimuksen tarkastelujen perusteella havaittiin, että kaikkien tutkimukseen valitun kolmen laatutyökalun soveltaminen myös verkostomaisessa toiminnassa on mahdollista, mutta se vaatii huomattavasti suurempaa työpanosta kuin soveltaminen yksittäisessä yrityksessä. Myös näiden kaikkien kolmen työkalun yhtä aikainen käyttö on mahdollista. Juuri oikean työkalun valitseminen kullekin hitsaavalle verkostolle vaatii tarkkaa perehtymistä verkostoon ja sen tilanteeseen.
Resumo:
Welding has a growing role in modern world manufacturing. Welding joints are extensively used from pipes to aerospace industries. Prediction of welding residual stresses and distortions is necessary for accurate evaluation of fillet welds in relation to design and safety conditions. Residual stresses may be beneficial or detrimental, depending whether they are tensile or compressive and the loading. They directly affect the fatigue life of the weld by impacting crack growth rate. Beside theoretical background of residual stresses this study calculates residual stresses and deformations due to localized heating by welding process and subsequent rapid cooling in fillet welds. Validated methods are required for this purpose due to complexity of process, localized heating, temperature dependence of material properties and heat source. In this research both empirical and simulation methods were used for the analysis of welded joints. Finite element simulation has become a popular tool of prediction of welding residual stresses and distortion. Three different cases with and without preload have been modeled during this study. Thermal heat load set is used by calculating heat flux from the given heat input energy. First the linear and then nonlinear material behavior model is modeled for calculation of residual stresses. Experimental work is done to calculate the stresses empirically. The results from both the methods are compared to check their reliability. Residual stresses can have a significant effect on fatigue performance of the welded joints made of high strength steel. Both initial residual stress state and subsequent residual stress relaxation need to be considered for accurate description of fatigue behavior. Tensile residual stresses are detrimental and will reduce the fatigue life and compressive residual stresses will increase it. The residual stresses follow the yield strength of base or filler material and the components made of high strength steel are typically thin, where the role of distortion is emphasizing.
Resumo:
The fuel element of LMFBR consists of a bundle of rods wrapped with an helical wire as spacer, surrounded by an hexagonal duct. In the present work, a semi-empirical model is developed to calculate bundle average and subchannel based friction factors and flow redistribution. The obtained results were compared to experimental data and they were considered satisfactory for wide range of geometrical parameters.
Resumo:
The purpose of the present paper is to review work that has been done on the pulsed wire anemometer technique and also suggest further developments that could be made in its range of application. The aper discusses the three types of probes that have been used in pulsed wire anemometry: the crossed wire velocity probe, the parallel wire wall shear stress probe and the parallel wire velocity probe. The work shows that the crossed wire and the parallel wire techniques can be used to make velocity, turbulence and wall shear stress measurements in highly turbulent flows without any upper restriction on turbulence level. Comments are also made on the potential of a parallel wire probe for use in highly turbulent flows that would enable higher order velocity cross-product terms to be measured.
Resumo:
An experimental investigation is performed in a turbulent flow in a seven wire-wrapped rod bundle, mounted in an open air facility. Static pressure distributions are measured on central and peripheral rods. By using a Preston tube, the wall shear stress profiles are experimentally obtained along the perimeter of the rods. The geometric parameters of the test section are P/D=1.20 and H/D=15. The measuring section is located at L/D=40 from the air inlet. It is observed that the dimensionless static pressure and wall shear stress profiles are nearly independent of the Reynolds number and strongly dependent of the wire-spacer position, with abrupt variations of the parameters in the neighborhood of the wires.