996 resultados para monolayer


Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, we describe the surface modification of porous polyethylene by the adsorption of polyelectrolyte mutilayers on plasma‐activated polyethylene surfaces. We use the migration rates of deionized water as an effective alternative to contact angle measurements in order to probe the interfacial energy of the modified surface. The newly acquired surface properties that result from the surface modification are monitored with respect to several key chemical and environmental variables. These variables were chosen so that they will reflect some of the common handling procedures in a laboratory or health care environments, such as exposure to solvents of different pH and polarities, and fluctuations of ambient temperature over an extended period, i.e., “shelf‐life” duration. The stability of these surface properties of the modified membranes is a fundamental requirement for their potential use in a variety of applications involving lateral flow and binding media for bio‐assays. In this paper, we show that a membrane modified by a polyelectrolyte monolayer is more stable than a membrane that has undergone plasma activation alone, while a membrane modified by a polyelectrolyte bilayer exhibits retention of the enhanced surface hydrophilic properties under various conditions and over a long period of time.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hydrophilic and chemically reactive porous media were prepared by adsorbing functional polymers at the surface of sintered polyethylene membranes. Modification of the membrane was accomplished by first exposing the membrane to an oxygen glow discharge gas plasma to introduce an electrostatic charge at the membrane surfaces. Cationic polyelectrolyte polyethylenimine (PEI) was adsorbed from solution to the anionic-charged surface to form an adsorbed monolayer. The adsorption of a second anionic polyelectrolyte onto the PEI layer allows further modification of the membrane surface to form a polyelectrolyte-bilayer complex. The conformation and stability of the adsorbed monolayers and bilayers comprising the modified surface are probed as a function of the polymer structure, charge density, and solubility. Using X-ray photoelectron spectroscopy analysis, we demonstrate that the presence of the polyelectrolyte multilayers drastically increases the density and specificity of the functional groups at the surface, more than what can be achieved through the plasma modification alone. Also, using the wicking rate of deionized, distilled water through the porous membrane to gauge the interfacial energy of the modified surface, we show that the membrane wicking rate can be controlled by varying the chemistry of the adsorbing polyelectrolytes and, to a lesser extent, by adjusting the polarity or ionic strength of the polyelectrolyte solution.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present a newly designed electrochemical surface forces apparatus (EC-SFA) that allows control and measurement of surface potentials and interfacial electrochemical reactions with simultaneous measurement of normal interaction forces (with nN resolution), friction forces (with μN resolution), and distances (with Å resolution) between apposing surfaces. We describe three applications of the developed EC-SFA and discuss the wide-range of potential other applications. In particular, we describe measurements of (1) force–distance profiles between smooth and rough gold surfaces and apposing self-assembled monolayer-covered smooth mica surfaces; (2) the effective changing thickness of anodically growing oxide layers with Å-accuracy on rough and smooth surfaces; and (3) friction forces evolving at a metal–ceramic contact, all as a function of the applied electrochemical potential. Interaction forces between atomically smooth surfaces are well-described using DLVO theory and the Hogg–Healy–Fuerstenau approximation for electric double layer interactions between dissimilar surfaces, which unintuitively predicts the possibility of attractive double layer forces between dissimilar surfaces whose surface potentials have similar sign, and repulsive forces between surfaces whose surface potentials have opposite sign. Surface roughness of the gold electrodes leads to an additional exponentially repulsive force in the force–distance profiles that is qualitatively well described by an extended DLVO model that includes repulsive hydration and steric forces. Comparing the measured thickness of the anodic gold oxide layer and the charge consumed for generating this layer allowed the identification of its chemical structure as a hydrated Au(OH)3 phase formed at the gold surface at high positive potentials. The EC-SFA allows, for the first time, one to look at complex long-term transient effects of dynamic processes (e.g., relaxation times), which are also reflected in friction forces while tuning electrochemical surface potentials.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have investigated the role of bone sialoprotein (BSP), a secreted glycoprotein normally found in bone, in breast cancer progression. To explore functions for BSP in human breast cancer invasion and metastasis, the full-length BSP cDNA was transfected into the MDA-MB-231-BAG human breast cancer cell line under the control of the CMV promoter. Clones expressing BSP and vector control clones were isolated. BSP producing clones showed increased monolayer wound healing, a faster rate of stellate outgrowth in Matrigel and increased rate of invasion into a collagen matrix when compared to control clones. Clones were also examined in models of breast cancer growth and metastasis in vivo. BSP transfected clones showed an increased rate of primary tumor growth following mammary fat pad injection of nude mice. BSP transfected clones and vector control clones metastasized to soft organs and bone at a similar rate after intra-cardiac injection as determined by real-time PCR and X-ray analysis. Although these organs were targets for both BSP transfected and non-transfected cells, the size of the metastatic lesion was shown to be significantly larger for BSP expressing clones. This was determined by real-time PCR analysis for soft organs and by X-ray analysis of bone lesions. For bone this was confirmed by intra-tibial injections of cells in nude mice. We conclude that BSP acts to drive primary and secondary tumor growth of breast cancers in vivo.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

SPARC (secreted protein acidic and rich in cysteine)/BM40/Osteonectin is a matricellular protein with multiple effects on cell behaviour. In vitro, its major known functions are anti-adhesive and anti-proliferative, and it is associated with tissue remodelling and cancer in vivo. SPARC is overexpressed in many cancers, including breast cancer, and the effects of SPARC seem to be cell type-specific. To study the effects of SPARC on breast cancer, we transfected SPARC into the MDA-MB-231 BAG, human breast cancer cell line using the Tet-On inducible system. By western analysis, we found low background levels in the MDA-MB-231 BAG and clone X parental cells, and prominent induction of SPARC protein expression after doxycycline treatment in SPARC transfected clones X5, X21, X24 and X75. Induction of SPARC expression did not affect cell morphology or adhesiveness to collagens type I and IV, but it slowed the rate of proliferation in adherent cultures. Cell cycle analysis showed that SPARC slowed the progression to S phase. Doxycycline induction of SPARC also slowed the rate of monolayer wound closure in the cultured wound healing assay. Thymidine inhibition of proliferation abrogated this effect, confirming that it was due to anti-proliferation rather than inhibition of migration. Consistent with this, we were unable to detect any differences in migration and Matrigel outgrowth analysis of doxycycline-stimulated cells. We conclude that SPARC is inhibitory to human breast cancer cell proliferation, and does not stimulate migration, in contrast to its stimulatory effects reported for melanoma (proliferation and migration) and glioma (migration) cells. Similar growth repression by SPARC has been reported for ovarian cancer cells, and this may be a common feature among carcinoma.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A general method for the generation of two-dimensional (2D) ordered, large-area, and liftable conducting polymer-nanobowl sheet has been demonstrated via chemical polymerization for the first time. The sheet is made using the monolayer self-assembled from polystyrene (PS) spheres at the aqueous/air interface as template, followed by depositing conducting polymer on the part of PS monolayer submerging in the aqueous phase via chemical polymerization, and core extraction. During the process of polymerization, no substrate is required, which caused the as-prepared patterned conducting polymer sheet can be easily lifted-off and deposited, in full size, on any flat substrate. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), and Fourier transform infrared (FTIR) spectrum were used to characterize the products

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Investigation of oxidation resistance of two-dimensional (2D) materials is critical for many of their applications because 2D materials could have higher oxidation kinetics than their bulk counterparts due to predominant surface atoms and structural distortions. In this study, the oxidation behavior of high-quality boron nitride (BN) nanosheets of 1-4 layers thick has been examined by heating in air. Atomic force microscopy and Raman spectroscopy analyses reveal that monolayer BN nanosheets can sustain up to 850 °C, and the starting temperature of oxygen doping/oxidation of BN nanosheets only slightly increases with the increase of nanosheet layer and depends on heating conditions. Elongated etch lines are found on the oxidized monolayer BN nanosheets, suggesting that the BN nanosheets are first cut along the chemisorbed oxygen chains and then the oxidative etching grows perpendicularly to these cut lines. The stronger oxidation resistance of BN nanosheets makes them more preferable for high-temperature applications than graphene.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The promising proposition of multifunctional nanoparticles for cancer diagnostics and therapeutics has inspired the development of theranostic approach for improved cancer therapy. Moreover, active targeting of drug carrier to specific target site is crucial for providing efficient delivery of therapeutics and imaging agents. In this regard, the present study investigates the theranostic capabilities of nutlin-3a loaded poly (lactide-co-glycolide) nanoparticles, functionalized with a targeting ligand (EpCAM aptamer) and an imaging agent (quantum dots) for cancer therapy and bioimaging. A wide spectrum of in vitro analysis (cellular uptake study, cytotoxicity assay, cell cycle and apoptosis analysis, apoptosis associated proteins study) revealed superior therapeutic potentiality of targeted drug loaded NPs over other formulations in EpCAM expressing cells. Moreover, our nanotheranostic system served as a superlative bio-imaging modality both in 2D monolayer culture and tumor spheroid model. Our result suggests that, these aptamer-guided multifunctional NPs may act as indispensable nanotheranostic approach toward cancer therapy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Immobilization of catechol derivatives on GC electrode surfaces can be performed by in situ generation and reduction of nitrocatechol. We present the oxidative nitration of catechol in the presence of nitrous acid followed by electrochemically reduction of the generated nitro aromatic group to the corresponding amine group and its conversion to diazonium cation at the electrode surface to yield a surface covalently modified with catechol. In this manner, some derivatives of catechol can be immobilized on the electrode surface. Whole of the process is carried out in Triethylammonium acetate ionic liquid as an inert and neutral medium (pH∼7.0). Surface coverage can be easily controlled by the applied potential, time and concentration of catechol. After modification, the electrochemical features of modified surface have been studied. Also modified GC electrode exhibited remarkable catalytic activity in the oxidation of NADH. The catalytic currents were proportional to the concentration of NADH over the range 0.01-0.80 mM. This condition can be used for modification of GC surfaces by various aromatic molecules for different application such as design of sensors and biosensors. © 2014 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Adsorption of small biomolecules onto the surface of nanoparticles offers a novel route to generation of nanoparticle assemblies with predictable architectures. Previously, ligand-exchange experiments on citrate-capped gold nanoparticles with the amino acid arginine were reported to support linear nanoparticle assemblies. Here, we use a combination of atomistic modeling with experimental characterization to explore aspects of the assembly hypothesis for these systems. Using molecular simulation, we probe the structural and energetic characteristics of arginine overlayers on the Au(111) surface under aqueous conditions at both low- and high-coverage regimes. In the low-density regime, the arginines lie flat on the surface. At constant composition, these overlayers are found to be lower in energy than the densely packed films, although the latter case appears kinetically stable when arginine is adsorbed via the zwitterion group, exposing the charged guanidinium group to the solvent. Our findings suggest that zwitterion-zwitterion hydrogen bonding at the gold surface and minimization of the electrostatic repulsion between adjacent guanidinium groups play key roles in determining arginine overlayer stability at the aqueous gold interface. Ligand-exchange experiments of citrate-capped gold nanoparticles with arginine derivatives agmatine and N-methyl-l-arginine reveal that modification at the guanidinium group significantly diminishes the propensity for linear assembly of the nanoparticles.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Phonon properties of boron nitride nanotubes (BNNTs) were investigated using Raman spectroscopy at different temperatures and new sp3- bonded BN vibrations were identified. The Raman peak of the E2g mode of BNNTs is found to be downshifted and broadened compared to that of hexagonal BN at the same temperature. By increasing the temperature, the energy of the E2g mode and the sp3-bonding mode are downshifted, with the temperature coefficients being -0.010 and -0.069cm-1/K, respectively. We attribute this downshifting to anharmonic effects as well as the elongation of the B-N bond in BNNT structures with increasing temperature. © 2014 The Japan Society of Applied Physics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Although tailored wet ball milling can be an efficient method to produce a large quantity of two-dimensional nanomaterials, such as boron nitride (BN) nanosheets, milling parameters including milling speed, ball-to-powder ratio, milling ball size and milling agent, are important for optimization of exfoliation efficiency and production yield. In this report, we systematically investigate the effects of different milling parameters on the production of BN nanosheets with benzyl benzoate being used as the milling agent. It is found that small balls of 0.1-0.2 mm in diameter are much more effective in exfoliating BN particles to BN nanosheets. Under the optimum condition, the production yield can be as high as 13.8% and the BN nanosheets are 0.5-1.5 μm in diameter and a few nanometers thick and of relative high crystallinity and chemical purity. The lubrication properties of the BN nanosheets in base oil have also been studied. The tribological tests show that the BN nanosheets can greatly reduce the friction coefficient and wear scar diameter of the base oil.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The influence of graphene on the electrical communication through organic layers fabricated on graphite and gold electrodes is investigated. These layers were prepared by in situ reductive adsorption of 4-aminobenzoic acid in the presence of NaNO2 and HCl to have surface bound carboxylic acid functionalities, followed by covalent attachment of 1-aminopyrene via an amide coupling reaction to have surface bound pyrene groups for graphene immobilization via noncovalent π-π stacking interaction. The coverage of the layers created via reductive adsorption on graphite electrodes was found to be much higher than that on gold electrodes. It was revealed that graphene significantly enhances the electrical communication through the layers on graphite electrodes but on gold electrodes the enhancement effect through the layers was only minor. However, when gold electrodes were modified with a self-assembled monolayer (SAM) of propanethiol the subsequent immobilization of graphene resulted in a significant enhancement of the electrical communication. It is also found that immobilization of graphene could affect the electron transfer between the redox probe, pyrene and the underlying electrodes. Atomic force microscopy (AFM) and scanning electron microscopy (SEM) were used to characterize the graphene sheets. Cyclic voltammetry, electrochemical impedance spectroscopy (EIS), and X-ray photoelectron spectroscopy (XPS) were also used to characterize the stepwise modified electrodes. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The response of cell membranes to the local physical environment significantly determines many biological processes and the practical applications of biomaterials. A better understanding of the dynamic assembly and environmental response of lipid membranes can help understand these processes and design novel nanomaterials for biomedical applications. The present work demonstrates the directed assembly of lipid monolayers, in both liquid and gel phases, on the surface of a monolayered reduced graphene oxide (rGO). The results from atomic force microscopy indicate that the hydrophobic aromatic plane and the defect holes due to reduction of GO sheets, along with the phase state and planar surface pressure of lipids, corporately determine the morphology and lateral structure of the assembled lipid monolayers. The DOPC molecules, in liquid phase, probably spread over the rGO surface with their tails associating closely with the hydrophobic aromatic plane, and accumulate to form circles of high area surrounding the defect holes on rGO sheets. However, the DPPC molecules, in gel phase, prefer to form a layer of continuous membrane covering the whole rGO sheet including defect holes. The strong association between rGO sheets and lipid tails further influences the melting behavior of lipids. This work reveals a dramatic effect of the local structure and surface property of rGO sheets on the substrate-directed assembly and subsequent phase behavior of the supported lipid membranes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report subnanometer modification enabled by an ultrafine helium ion beam. By adjusting ion dose and the beam profile, structural defects were controllably introduced in a few-layer molybdenum disulfide (MoS2) sample and its stoichiometry was modified by preferential sputtering of sulfur at a few-nanometer scale. Localized tuning of the resistivity of MoS2 was demonstrated and semiconducting, metallic-like, or insulating material was obtained by irradiation with different doses of He(+). Amorphous MoSx with metallic behavior has been demonstrated for the first time. Fabrication of MoS2 nanostructures with 7 nm dimensions and pristine crystal structure was also achieved. The damage at the edges of these nanostructures was typically confined to within 1 nm. Nanoribbons with widths as small as 1 nm were reproducibly fabricated. This nanoscale modification technique is a generalized approach that can be applied to various two-dimensional (2D) materials to produce a new range of 2D metamaterials.