990 resultados para modeling algorithms
Resumo:
Vegetation has a profound effect on flow and sediment transport processes in natural rivers, by increasing both skin friction and form drag. The increase in drag introduces a drag discontinuity between the in-canopy flow and the flow above, which leads to the development of an inflection point in the velocity profile, resembling a free shear layer. Therefore, drag acts as the primary driver for the entire canopy system. Most current numerical hydraulic models which incorporate vegetation rely either on simple, static plant forms, or canopy-scaled drag terms. However, it is suggested that these are insufficient as vegetation canopies represent complex, dynamic, porous blockages within the flow, which are subject to spatially and temporally dynamic drag forces. Here we present a dynamic drag methodology within a CFD framework. Preliminary results for a benchmark cylinder case highlight the accuracy of the method, and suggest its applicability to more complex cases.
Resumo:
En els darrers anys, la criptografia amb corbes el.líptiques ha adquirit una importància creixent, fins a arribar a formar part en la actualitat de diferents estàndards industrials. Tot i que s'han dissenyat variants amb corbes el.líptiques de criptosistemes clàssics, com el RSA, el seu màxim interès rau en la seva aplicació en criptosistemes basats en el Problema del Logaritme Discret, com els de tipus ElGamal. En aquest cas, els criptosistemes el.líptics garanteixen la mateixa seguretat que els construïts sobre el grup multiplicatiu d'un cos finit primer, però amb longituds de clau molt menor. Mostrarem, doncs, les bones propietats d'aquests criptosistemes, així com els requeriments bàsics per a que una corba sigui criptogràficament útil, estretament relacionat amb la seva cardinalitat. Revisarem alguns mètodes que permetin descartar corbes no criptogràficament útils, així com altres que permetin obtenir corbes bones a partir d'una de donada. Finalment, descriurem algunes aplicacions, com són el seu ús en Targes Intel.ligents i sistemes RFID, per concloure amb alguns avenços recents en aquest camp.
Resumo:
La présente thèse s'intitule "Développent et Application des Méthodologies Computationnelles pour la Modélisation Qualitative". Elle comprend tous les différents projets que j'ai entrepris en tant que doctorante. Plutôt qu'une mise en oeuvre systématique d'un cadre défini a priori, cette thèse devrait être considérée comme une exploration des méthodes qui peuvent nous aider à déduire le plan de processus regulatoires et de signalisation. Cette exploration a été mue par des questions biologiques concrètes, plutôt que par des investigations théoriques. Bien que tous les projets aient inclus des systèmes divergents (réseaux régulateurs de gènes du cycle cellulaire, réseaux de signalisation de cellules pulmonaires) ainsi que des organismes (levure à fission, levure bourgeonnante, rat, humain), nos objectifs étaient complémentaires et cohérents. Le projet principal de la thèse est la modélisation du réseau de l'initiation de septation (SIN) du S.pombe. La cytokinèse dans la levure à fission est contrôlée par le SIN, un réseau signalant de protéines kinases qui utilise le corps à pôle-fuseau comme échafaudage. Afin de décrire le comportement qualitatif du système et prédire des comportements mutants inconnus, nous avons décidé d'adopter l'approche de la modélisation booléenne. Dans cette thèse, nous présentons la construction d'un modèle booléen étendu du SIN, comprenant la plupart des composantes et des régulateurs du SIN en tant que noeuds individuels et testable expérimentalement. Ce modèle utilise des niveaux d'activité du CDK comme noeuds de contrôle pour la simulation d'évènements du SIN à différents stades du cycle cellulaire. Ce modèle a été optimisé en utilisant des expériences d'un seul "knock-out" avec des effets phénotypiques connus comme set d'entraînement. Il a permis de prédire correctement un set d'évaluation de "knock-out" doubles. De plus, le modèle a fait des prédictions in silico qui ont été validées in vivo, permettant d'obtenir de nouvelles idées de la régulation et l'organisation hiérarchique du SIN. Un autre projet concernant le cycle cellulaire qui fait partie de cette thèse a été la construction d'un modèle qualitatif et minimal de la réciprocité des cyclines dans la S.cerevisiae. Les protéines Clb dans la levure bourgeonnante présentent une activation et une dégradation caractéristique et séquentielle durant le cycle cellulaire, qu'on appelle communément les vagues des Clbs. Cet évènement est coordonné avec la courbe d'activation inverse du Sic1, qui a un rôle inhibitoire dans le système. Pour l'identification des modèles qualitatifs minimaux qui peuvent expliquer ce phénomène, nous avons sélectionné des expériences bien définies et construit tous les modèles minimaux possibles qui, une fois simulés, reproduisent les résultats attendus. Les modèles ont été filtrés en utilisant des simulations ODE qualitatives et standardisées; seules celles qui reproduisaient le phénotype des vagues ont été gardées. L'ensemble des modèles minimaux peut être utilisé pour suggérer des relations regulatoires entre les molécules participant qui peuvent ensuite être testées expérimentalement. Enfin, durant mon doctorat, j'ai participé au SBV Improver Challenge. Le but était de déduire des réseaux spécifiques à des espèces (humain et rat) en utilisant des données de phosphoprotéines, d'expressions des gènes et des cytokines, ainsi qu'un réseau de référence, qui était mis à disposition comme donnée préalable. Notre solution pour ce concours a pris la troisième place. L'approche utilisée est expliquée en détail dans le dernier chapitre de la thèse. -- The present dissertation is entitled "Development and Application of Computational Methodologies in Qualitative Modeling". It encompasses the diverse projects that were undertaken during my time as a PhD student. Instead of a systematic implementation of a framework defined a priori, this thesis should be considered as an exploration of the methods that can help us infer the blueprint of regulatory and signaling processes. This exploration was driven by concrete biological questions, rather than theoretical investigation. Even though the projects involved divergent systems (gene regulatory networks of cell cycle, signaling networks in lung cells), as well as organisms (fission yeast, budding yeast, rat, human), our goals were complementary and coherent. The main project of the thesis is the modeling of the Septation Initiation Network (SIN) in S.pombe. Cytokinesis in fission yeast is controlled by the SIN, a protein kinase signaling network that uses the spindle pole body as scaffold. In order to describe the qualitative behavior of the system and predict unknown mutant behaviors we decided to adopt a Boolean modeling approach. In this thesis, we report the construction of an extended, Boolean model of the SIN, comprising most SIN components and regulators as individual, experimentally testable nodes. The model uses CDK activity levels as control nodes for the simulation of SIN related events in different stages of the cell cycle. The model was optimized using single knock-out experiments of known phenotypic effect as a training set, and was able to correctly predict a double knock-out test set. Moreover, the model has made in silico predictions that have been validated in vivo, providing new insights into the regulation and hierarchical organization of the SIN. Another cell cycle related project that is part of this thesis was to create a qualitative, minimal model of cyclin interplay in S.cerevisiae. CLB proteins in budding yeast present a characteristic, sequential activation and decay during the cell cycle, commonly referred to as Clb waves. This event is coordinated with the inverse activation curve of Sic1, which has an inhibitory role in the system. To generate minimal qualitative models that can explain this phenomenon, we selected well-defined experiments and constructed all possible minimal models that, when simulated, reproduce the expected results. The models were filtered using standardized qualitative ODE simulations; only the ones reproducing the wave-like phenotype were kept. The set of minimal models can be used to suggest regulatory relations among the participating molecules, which will subsequently be tested experimentally. Finally, during my PhD I participated in the SBV Improver Challenge. The goal was to infer species-specific (human and rat) networks, using phosphoprotein, gene expression and cytokine data and a reference network provided as prior knowledge. Our solution to the challenge was selected as in the final chapter of the thesis.
Resumo:
Background: Design of newly engineered microbial strains for biotechnological purposes would greatly benefit from the development of realistic mathematical models for the processes to be optimized. Such models can then be analyzed and, with the development and application of appropriate optimization techniques, one could identify the modifications that need to be made to the organism in order to achieve the desired biotechnological goal. As appropriate models to perform such an analysis are necessarily non-linear and typically non-convex, finding their global optimum is a challenging task. Canonical modeling techniques, such as Generalized Mass Action (GMA) models based on the power-law formalism, offer a possible solution to this problem because they have a mathematical structure that enables the development of specific algorithms for global optimization. Results: Based on the GMA canonical representation, we have developed in previous works a highly efficient optimization algorithm and a set of related strategies for understanding the evolution of adaptive responses in cellular metabolism. Here, we explore the possibility of recasting kinetic non-linear models into an equivalent GMA model, so that global optimization on the recast GMA model can be performed. With this technique, optimization is greatly facilitated and the results are transposable to the original non-linear problem. This procedure is straightforward for a particular class of non-linear models known as Saturable and Cooperative (SC) models that extend the power-law formalism to deal with saturation and cooperativity. Conclusions: Our results show that recasting non-linear kinetic models into GMA models is indeed an appropriate strategy that helps overcoming some of the numerical difficulties that arise during the global optimization task.
Resumo:
Sudoku problems are some of the most known and enjoyed pastimes, with a never diminishing popularity, but, for the last few years those problems have gone from an entertainment to an interesting research area, a twofold interesting area, in fact. On the one side Sudoku problems, being a variant of Gerechte Designs and Latin Squares, are being actively used for experimental design, as in [8, 44, 39, 9]. On the other hand, Sudoku problems, as simple as they seem, are really hard structured combinatorial search problems, and thanks to their characteristics and behavior, they can be used as benchmark problems for refining and testing solving algorithms and approaches. Also, thanks to their high inner structure, their study can contribute more than studies of random problems to our goal of solving real-world problems and applications and understanding problem characteristics that make them hard to solve. In this work we use two techniques for solving and modeling Sudoku problems, namely, Constraint Satisfaction Problem (CSP) and Satisfiability Problem (SAT) approaches. To this effect we define the Generalized Sudoku Problem (GSP), where regions can be of rectangular shape, problems can be of any order, and solution existence is not guaranteed. With respect to the worst-case complexity, we prove that GSP with block regions of m rows and n columns with m = n is NP-complete. For studying the empirical hardness of GSP, we define a series of instance generators, that differ in the balancing level they guarantee between the constraints of the problem, by finely controlling how the holes are distributed in the cells of the GSP. Experimentally, we show that the more balanced are the constraints, the higher the complexity of solving the GSP instances, and that GSP is harder than the Quasigroup Completion Problem (QCP), a problem generalized by GSP. Finally, we provide a study of the correlation between backbone variables – variables with the same value in all the solutions of an instance– and hardness of GSP.
Resumo:
The goal of this work is to try to create a statistical model, based only on easily computable parameters from the CSP problem to predict runtime behaviour of the solving algorithms, and let us choose the best algorithm to solve the problem. Although it seems that the obvious choice should be MAC, experimental results obtained so far show, that with big numbers of variables, other algorithms perfom much better, specially for hard problems in the transition phase.
Resumo:
Approximate models (proxies) can be employed to reduce the computational costs of estimating uncertainty. The price to pay is that the approximations introduced by the proxy model can lead to a biased estimation. To avoid this problem and ensure a reliable uncertainty quantification, we propose to combine functional data analysis and machine learning to build error models that allow us to obtain an accurate prediction of the exact response without solving the exact model for all realizations. We build the relationship between proxy and exact model on a learning set of geostatistical realizations for which both exact and approximate solvers are run. Functional principal components analysis (FPCA) is used to investigate the variability in the two sets of curves and reduce the dimensionality of the problem while maximizing the retained information. Once obtained, the error model can be used to predict the exact response of any realization on the basis of the sole proxy response. This methodology is purpose-oriented as the error model is constructed directly for the quantity of interest, rather than for the state of the system. Also, the dimensionality reduction performed by FPCA allows a diagnostic of the quality of the error model to assess the informativeness of the learning set and the fidelity of the proxy to the exact model. The possibility of obtaining a prediction of the exact response for any newly generated realization suggests that the methodology can be effectively used beyond the context of uncertainty quantification, in particular for Bayesian inference and optimization.
Resumo:
OBJECTIVES: Blood pressures in persons of African descent exceed those of other racial/ethnic groups in the United States. Whether this trait is attributable to the genetic factors in African-origin populations, or a result of inadequately measured environmental exposures, such as racial discrimination, is not known. To study this question, we conducted a multisite comparative study of communities in the African diaspora, drawn from metropolitan Chicago, Kingston, Jamaica, rural Ghana, Cape Town, South Africa, and the Seychelles. METHODS: At each site, 500 participants between the age of 25 and 49 years, with approximately equal sex balance, were enrolled for a longitudinal study of energy expenditure and weight gain. In this study, we describe the patterns of blood pressure and hypertension observed at baseline among the sites. RESULTS: Mean SBP and DBP were very similar in the United States and South Africa in both men and women, although among women, the prevalence of hypertension was higher in the United States (24 vs. 17%, respectively). After adjustment for multiple covariates, relative to participants in the United States, SBP was significantly higher among the South Africans by 9.7 mmHg (P < 0.05) and significantly lower for each of the other sites: for example, Jamaica: -7.9 mmHg (P = 0.06), Ghana: -12.8 mmHg (P < 0.01) and Seychelles: -11.1 mmHg (P = 0.01). CONCLUSION: These data are consistent with prior findings of a blood pressure gradient in societies of the African diaspora and confirm that African-origin populations with lower social status in multiracial societies, such as the United States and South Africa, experience more hypertension than anticipated based on anthropometric and measurable socioeconomic risk factors.
Resumo:
In this paper we design and develop several filtering strategies for the analysis of data generated by a resonant bar gravitational wave (GW) antenna, with the goal of assessing the presence (or absence) therein of long-duration monochromatic GW signals, as well as the eventual amplitude and frequency of the signals, within the sensitivity band of the detector. Such signals are most likely generated in the fast rotation of slightly asymmetric spinning stars. We develop practical procedures, together with a study of their statistical properties, which will provide us with useful information on the performance of each technique. The selection of candidate events will then be established according to threshold-crossing probabilities, based on the Neyman-Pearson criterion. In particular, it will be shown that our approach, based on phase estimation, presents a better signal-to-noise ratio than does pure spectral analysis, the most common approach.
Resumo:
Angiogenesis plays a key role in tumor growth and cancer progression. TIE-2-expressing monocytes (TEM) have been reported to critically account for tumor vascularization and growth in mouse tumor experimental models, but the molecular basis of their pro-angiogenic activity are largely unknown. Moreover, differences in the pro-angiogenic activity between blood circulating and tumor infiltrated TEM in human patients has not been established to date, hindering the identification of specific targets for therapeutic intervention. In this work, we investigated these differences and the phenotypic reversal of breast tumor pro-angiogenic TEM to a weak pro-angiogenic phenotype by combining Boolean modelling and experimental approaches. Firstly, we show that in breast cancer patients the pro-angiogenic activity of TEM increased drastically from blood to tumor, suggesting that the tumor microenvironment shapes the highly pro-angiogenic phenotype of TEM. Secondly, we predicted in silico all minimal perturbations transitioning the highly pro-angiogenic phenotype of tumor TEM to the weak pro-angiogenic phenotype of blood TEM and vice versa. In silico predicted perturbations were validated experimentally using patient TEM. In addition, gene expression profiling of TEM transitioned to a weak pro-angiogenic phenotype confirmed that TEM are plastic cells and can be reverted to immunological potent monocytes. Finally, the relapse-free survival analysis showed a statistically significant difference between patients with tumors with high and low expression values for genes encoding transitioning proteins detected in silico and validated on patient TEM. In conclusion, the inferred TEM regulatory network accurately captured experimental TEM behavior and highlighted crosstalk between specific angiogenic and inflammatory signaling pathways of outstanding importance to control their pro-angiogenic activity. Results showed the successful in vitro reversion of such an activity by perturbation of in silico predicted target genes in tumor derived TEM, and indicated that targeting tumor TEM plasticity may constitute a novel valid therapeutic strategy in breast cancer.
Resumo:
Children who sustain a prenatal or perinatal brain injury in the form of a stroke develop remarkably normal cognitive functions in certain areas, with a particular strength in language skills. A dominant explanation for this is that brain regions from the contralesional hemisphere "take over" their functions, whereas the damaged areas and other ipsilesional regions play much less of a role. However, it is difficult to tease apart whether changes in neural activity after early brain injury are due to damage caused by the lesion or by processes related to postinjury reorganization. We sought to differentiate between these two causes by investigating the functional connectivity (FC) of brain areas during the resting state in human children with early brain injury using a computational model. We simulated a large-scale network consisting of realistic models of local brain areas coupled through anatomical connectivity information of healthy and injured participants. We then compared the resulting simulated FC values of healthy and injured participants with the empirical ones. We found that the empirical connectivity values, especially of the damaged areas, correlated better with simulated values of a healthy brain than those of an injured brain. This result indicates that the structural damage caused by an early brain injury is unlikely to have an adverse and sustained impact on the functional connections, albeit during the resting state, of damaged areas. Therefore, these areas could continue to play a role in the development of near-normal function in certain domains such as language in these children.
Resumo:
Vaatimusmäärittelyn tavoitteena on luoda halutun järjestelmän kokonaisen, yhtenäisen vaatimusluettelon vaatimusten määrittämiseksi käsitteellisellä tasolla. Liiketoimintaprosessien mallintaminen on varsin hyödyllinen vaatimusmäärittelyn varhaisissa vaiheissa. Tämä työ tutkii liiketoimintaprosessien mallintamista tietojärjestelmien kehittämistä varten. Nykyään on olemassa erilaisia liiketoimintaprosessien mallintamiseen tarkoitettuja tekniikoita. Tämä työ tarkastaa liiketoimintaprosessien mallintamisen periaatteet ja näkökohdat sekä eri mallinnustekniikoita. Uusi menetelmä, joka on suunniteltu erityisesti pienille ja keskisuurille ohjelmistoprojekteille, on kehitetty prosessinäkökohtien ja UML-kaavioiden perusteella.
Resumo:
Kuvien laatu on tutkituimpia ja käytetyimpiä aiheita. Tässä työssä tarkastellaan värin laatu ja spektrikuvia. Työssä annetaan yleiskuva olemassa olevista pakattujen ja erillisten kuvien laadunarviointimenetelmistä painottaen näiden menetelmien soveltaminen spektrikuviin. Tässä työssä esitellään spektriväriulkomuotomalli värikuvien laadunarvioinnille. Malli sovelletaan spektrikuvista jäljennettyihin värikuviin. Malli pohjautuu sekä tilastolliseen spektrikuvamalliin, joka muodostaa yhteyden spektrikuvien ja valokuvien parametrien välille, että kuvan yleiseen ulkomuotoon. Värikuvien tilastollisten spektriparametrien ja fyysisten parametrien välinen yhteys on varmennettu tietokone-pohjaisella kuvamallinnuksella. Mallin ominaisuuksien pohjalta on kehitetty koekäyttöön tarkoitettu menetelmä värikuvien laadunarvioinnille. On kehitetty asiantuntija-pohjainen kyselymenetelmä ja sumea päättelyjärjestelmä värikuvien laadunarvioinnille. Tutkimus osoittaa, että spektri-väri –yhteys ja sumea päättelyjärjestelmä soveltuvat tehokkaasti värikuvien laadunarviointiin.