985 resultados para limit state
New Solid State Forms of the Anti-HIV Drug Efavirenz. Conformational Flexibility and High Z ` Issues
Resumo:
Structural information on the solid forms of efavirenz, a non-nucleoside reverse transcriptase inhibitor, is limited, although various polymorphic forms of this drug have been patented. We report here structural studies of four new crystal forms a pure form, a cyclohexane solvate, and cocrystals with 1,4-cyclohexanedione and 4,4'-bipyridine. Temperature dependent single-crystal to single-crystal phase transitions are observed for the pure form and for the cyclohexane solvate with an increase in the number of symmetry independent molecules, Z', upon a lowering of temperature. Other issues related to these solid forms, such as thermal stability, conformational flexibility, and high Z' occurrences, are addressed by using a combined experimental and computational approach.
Resumo:
Lead acid batteries are used in hybrid vehicles and telecommunications power supply. For reliable operation of these systems, an indication of state of charge of battery is essential. To determine the state of charge of battery, current integration method combined with open circuit voltage, is being implemented. To reduce the error in the current integration method the dependence of available capacity as a function of discharge current is determined. The current integration method is modified to incorporate this factor. The experimental setup built to obtain the discharge characterstics of the battery is presented.
Resumo:
This paper describes an approach for the analysis and design of 765kV/400kV EHV transmission system which is a typical expansion in Indian power grid system, based on the analysis of steady state and transient over voltages. The approach for transmission system design is iterative in nature. The first step involves exhaustive power flow analysis, based on constraints such as right of way, power to be transmitted, power transfer capabilities of lines, existing interconnecting transformer capabilities etc. Acceptable bus voltage profiles and satisfactory equipment loadings during all foreseeable operating conditions for normal and contingency operation are the guiding criteria. Critical operating strategies are also evolved in this initial design phase. With the steady state over voltages obtained, comprehensive dynamic and transient studies are to be carried out including switching over voltages studies. This paper presents steady state and switching transient studies for alternative two typical configurations of 765kV/400 kV systems and the results are compared. Transient studies are carried out to obtain the peak values of 765 kV transmission systems and are compared with the alternative configurations of existing 400 kV systems.
Resumo:
It is a policy of Solid State Communications’ Executive Editorial Board to organize special issues from time to time on topics of current interests. The present issue focuses on soft condensed matter, a rapidly developing and diverse area of importance not only for the basic science, but also for its potential applications. The ten articles in this issue are intended to give the readers a snapshot of some latest developments in soft condensed matter, mainly from the point of view of basic science. As the special issues are intended for a broad audience, most articles are short reviews that introduce the readers to the relevant topics. Hence this special issue can be especially helpful to readers who might not be specialists in this area but would like to have a quick grasp on some of the interesting research directions.
Resumo:
The activity of gallium in liquid Ga-Te alloys has been measured at 1120 K using a solid state galvanic cell incorporating yttria-stabilized thoria as the solid electrolyte. The cell can be schematically represented as (−) W,Re,Ga(1)+Ga2O3(s)|(Y2O3) ThO2|Ga-Te(1) + Ga2O3(s), Re, W (+) The activity of tellurium was derived by Gibbs-Duhem integration. The activity of gallium shows negative deviation from Raoult's law for XGa < 0.6 and positive deviation from ideality for XGa > 0.6. The activity of gallium was constant in the composition range 0.73 < XGa < 0.89, indicating liquid state immiscibility in this region. The Gibbs energy of mixing and the concentration-concentration structure factor at long wavelength limit show a minimum at XGa ≈ 0.4, suggesting strong interactions in the liquid phase with formation of ‘Ga2Te3‘-type complexes
Resumo:
The general method earlier developed by the writers for obtaining valid lower bound solutions to slabs under uniformly distributed load and supported along all edges is extended to the slabs with a free edge. Lower bound solutions with normal moment criterion are presented for six cases of orthotropically reinforced slabs, with one of the short edges being free and the other three edges being any combination of fixed and simply supported conditions. The expressions for moment field and collapse load are given for each slab. The lower bounds have been compared with the corresponding upper bound values obtained from the yield line theory with simple straight yield line modes of failure. They are also compared with Nielsen’s solutions available for two cases with isotropic reinforcement.
Resumo:
ZnO (core)/graphitic (shell) nanowires were successfully fabricated by a one-step method. Morphology of the as-grown nanowires was studied in detail by scanning electron microscopy, transmission electron microscopy (TEM), and energy dispersive X-ray analysis (EDS). High resolution TEM micrographs and selected area electron diffraction patterns reveal the core/shell morphology of the nanowires that grew along the c-axis of ZnO. EDS study of the nanowires confirms that there are no impurities within the detectable limit. Superconducting quantum interference device magnetometer measurements show room temperature ferromagnetic ordering in these core/shell nanowires. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
A modern system theory based nonlinear control design is discussed in this paper for successful operation of an air-breathing engine operating at supersonic speed. The primary objective of the control design of such an air-breathing engine is to ensure that the engine dynamically produces the thrust that tracks a commanded value of thrust as closely as possible by regulating the fuel flow to the combustion system. However, since the engine operates in the supersonic range, an important secondary objective is to manage the shock wave configuration in the intake section of the engine which is manipulated by varying the throat area of the nozzle. A nonlinear sliding mode control technique has been successfully used to achieve both of the above objectives. In this problem, since the process is faster than the actuators, independent control designs are also carried out for the actuators as well to assure the satisfactory performance of the system. Moreover, to filter out the sensor and process noises and to estimate the states for making the control design operate based on output feedback, an Extended Kalman Filter based state estimation design is also carried out. The promising simulation results suggest that the proposed control design approach is quite successful in obtaining robust performance of the air-breathing engine.
Resumo:
It is known that Berry curvature of the band structure of certain crystals can lead to effective noncommutativity between spatial coordinates. Using the techniques of twisted quantum field theory, we investigate the question of the formation of a paired state of twisted fermions in such a system. We find that to leading order in the noncommutativity parameter, the gap between the non-interacting ground state and the paired state is smaller compared to its commutative counterpart. This suggests that BCS type superconductivity, if present in such systems, is more fragile and easier to disrupt. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
The pattern of expression of the genes involved in the utilization of aryl beta-glucosides such as arbutin and salicin is different in the genus Shigella compared to Escherichia coli. The results presented here indicate that the homologue of the cryptic bgl operon of E. coli is conserved in Shigella sonnei and is the primary system involved in beta-glucoside utilization in the organism. The organization of the bgl genes in 5. sonnei is similar to that of E. coli; however there are three major differences in terms of their pattern of expression. (i) The bglB gene, encoding phospho-beta-glucosidase B, is insertionally inactivated in 5. sonnei. As a result, mutational activation of the silent bgl promoter confers an Arbutin-positive (Arb(+)) phenotype to the cells in a single step; however, acquiring a Salicin-positive (Sal(+)) phenotype requires the reversion or suppression of the bglB mutation in addition. (ii) Unlike in E. coli, a majority of the activating mutations (conferring the Arb(+) phenotype) map within the unlinked hns locus, whereas activation of the E. coli bgl operon under the same conditions is predominantly due to insertions within the bglR locus. (iii) Although the bgl promoter is silent in the wild-type strain of 5. sonnei (as in the case of E. coli), transcriptional and functional analyses indicated a higher basal level of transcription of the downstream genes. This was correlated with a 1 bp deletion within the putative Rho-independent terminator present in the leader sequence preceding the homologue of the bglG gene. The possible evolutionary implications of these differences for the maintenance of the genes in the cryptic state are discussed.
Resumo:
The ultimate bearing capacity of a number of multiple strip footings, identically spaced and equally loaded to failure at the same time,is computed by using the lower bound limit analysis in combination with finite elements. The efficiency factor due to the component of soil unit weight, is computed with respect to changes in the clear spacing (xi(gamma)) between the footings. It is noted that the failure load for a footing in the group becomes always greater than that of a single isolated footing. The values of xi(gamma) for the smooth footings are found to be always lower than the rough footings. The values ofxi(gamma) are found to increase continuously with a decrease in the spacing between footings. As compared to the available theoretical and experimental results reported in literature, the present analysis provides generally a little lower values of xi(gamma). (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
An expression for the EMF of a nonisothermal galvanic cell, with gradients in both temperature and chemical potential across a solid electrolyte, is derived based on the phenomenological equations of irreversible thermodynamics. The EMF of the nonisothermal cell can be written as a sum of the contributions from the chemical potential gradient and the EMF of a thermocell operating in the same temperature gradient but at unit activity of the neutral form of the migrating species. The validity of the derived equation is confirmed experimentally by imposing nonlinear gradients of temperature and chemical potential across galvanic cells constructed using fully stabilized zirconia as the electrolyte. The nature of the gradient has no effect on the EMF.
Resumo:
The problem of time variant reliability analysis of existing structures subjected to stationary random dynamic excitations is considered. The study assumes that samples of dynamic response of the structure, under the action of external excitations, have been measured at a set of sparse points on the structure. The utilization of these measurements m in updating reliability models, postulated prior to making any measurements, is considered. This is achieved by using dynamic state estimation methods which combine results from Markov process theory and Bayes' theorem. The uncertainties present in measurements as well as in the postulated model for the structural behaviour are accounted for. The samples of external excitations are taken to emanate from known stochastic models and allowance is made for ability (or lack of it) to measure the applied excitations. The future reliability of the structure is modeled using expected structural response conditioned on all the measurements made. This expected response is shown to have a time varying mean and a random component that can be treated as being weakly stationary. For linear systems, an approximate analytical solution for the problem of reliability model updating is obtained by combining theories of discrete Kalman filter and level crossing statistics. For the case of nonlinear systems, the problem is tackled by combining particle filtering strategies with data based extreme value analysis. In all these studies, the governing stochastic differential equations are discretized using the strong forms of Ito-Taylor's discretization schemes. The possibility of using conditional simulation strategies, when applied external actions are measured, is also considered. The proposed procedures are exemplifiedmby considering the reliability analysis of a few low-dimensional dynamical systems based on synthetically generated measurement data. The performance of the procedures developed is also assessed based on a limited amount of pertinent Monte Carlo simulations. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Recent trends in the use of dispersed solid electrolytes and auxiliary electrodes in galvanic cells have increased the need for assessment of materials compatibility. In the design of dispersed solid electrolytes, the potential reactions between the dispersoid and the matrix must be considered. In galvanic cells, possible interactions between the dispersoid and the electrode materials must also be considered in addition to ion exchange between the matrix and the electrode. When auxiliary electrodes, which convert the chemical potential of a component present at the electrode into an equivalent chemical potential of the neutral form of the migrating species in the solid electrolyte are employed, displacement reactions between phases in contact may limit the range of applicability of the cell. Examples of such constraints in the use of oxide dispersoids in fluoride solid electrolytes and NASICON/Na2S couple for measurement of sulphur potential are illustrated with the aid of Ellingham and stability field diagrams.
Resumo:
A unified treatment of polarization relaxation, dielectric dispersion and solvation dynamics in a dense, dipolar liquid is presented. It is shown that the information of solvent polarization relaxation that is obtained by macroscopic dielectric dispersion experiments is not sufficient to understand dynamics of solvation of a newly created ion or dipole. In solvation, a significant contribution comes from intermediate wave vector processes which depend critically on the short range (nearest‐neighbor) spatial and orientational order that are present in a dense, dipolar liquid. An analytic expression is obtained for the time dependent solvation energy that depends, in addition to the translational and rotational diffusion coefficients of the liquid, on the ratio of solute–solvent molecular sizes and on the microscopic structure of the polar liquid. Mean spherical approximation (MSA) theory is used to obtain numerical results for polarization relaxation, for wave vector and frequency dependent dielectric function and for time dependent solvation energy. We find that in the absence of translational contribution, the solvation of an ion is, in general, nonexponential. In this case, the short time decay is dominated by the longitudinal relaxation time but the long time decay is dominated by much slower large wave vector processes involving nearest‐neighbor molecules. The presence of a significant translational contribution drastically alters the decay behavior. Now, the long‐time behavior is given by the longitudinal relaxation time constant and the short time dynamics is controlled by the large wave vector processes. Thus, although the continuum model itself is conceptually wrong, a continuum model like result is recovered in the presence of a sizeable translational contribution. The continuum model result is also recovered in the limit of large solute to solvent size ratio. In the opposite limit of small solute size, the decay is markedly nonexponential (if the translational contribution is not very large) and a complete breakdown of the continuum model takes place. The significance of these results is discussed.