948 resultados para intermediate energy heavy ion collision


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Travelling wave ion mobility mass spectrometry (TWIM-MS) with post-TWIM and pre-TWIM collision-induced dissociation (CID) experiments were used to form, separate and characterize protomers sampled directly from solutions or generated in the gas phase via CID. When in solution equilibria, these species were transferred to the gas phase via electrospray ionization, and then separated by TWIM-MS. CID performed after TWIM separation (post-TWIM) allowed the characterization of both protomers via structurally diagnostic fragments. Protonated aniline (1) sampled from solution was found to be constituted of a ca. 5:1 mixture of two gaseous protomers, that is, the N-protonated (1a) and ring protonated (1b) molecules, respectively. When dissociated, 1a nearly exclusively loses NH3, whereas 1b displays a much diverse set of fragments. When formed via CID, varying populations of 1a and 1b were detected. Two co-existing protomers of two isomeric porphyrins were also separated and characterized via post-TWIM CID. A deprotonated porphyrin sampled from a basic methanolic solution was found to be constituted predominantly of the protomer arising from deprotonation at the carboxyl group, which dissociates promptly by CO2 loss, but a CID-resistant protomer arising from deprotonation at a porphyrinic ring NH was also detected and characterized. The doubly deprotonated porphyrin was found to be constituted predominantly of a single protomer arising from deprotonation of two carboxyl groups. Copyright (C) 2012 John Wiley & Sons, Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We describe an approach to ion implantation in which the plasma and its electronics are held at ground potential and the ion beam is injected into a space held at high negative potential, allowing considerable savings both economically and technologically. We used an “inverted ion implanter” of this kind to carry out implantation of gold into alumina, with Au ion energy 40 keV and dose (3–9) × 1016 cm−2. Resistivity was measured in situ as a function of dose and compared with predictions of a model based on percolation theory, in which electron transport in the composite is explained by conduction through a random resistor network formed by Au nanoparticles. Excellent agreement is found between the experimental results and the theory.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Reactions initiated by collisions with low-energy secondary electrons has been found to be the prominent mechanism toward the radiation damage on living tissues through DNA strand breaks. Now it is widely accepted that during the interaction with these secondary species the selective breaking of chemical bonds is triggered by dissociative electron attachment (DEA), that is, the capture of the incident electron and the formation of temporary negative ion states [1,2,3]. One of the approaches largely used toward a deeper understanding of the radiation damage to DNA is through modeling of DEA with its basic constituents (nucleotide bases, sugar and other subunits). We have tried to simplify this approach and attempt to make it comprehensible at a more fundamental level by looking at even simple molecules. Studies involving organic systems such as carboxylic acids, alcohols and simple ¯ve-membered heterocyclic compounds are taken as starting points for these understanding. In the present study we investigate the role played by elastic scattering and electronic excitation of molecules on electron-driven chemical processes. Special attention is focused on the analysis of the in°uence of polarization and multichannel coupling e®ects on the magnitude of elastic and electronically inelastic cross-sections. Our aim is also to investigate the existence of resonances in the elastic and electronically inelastic channels as well as to characterize them with respect to its type (shape, core-excited or Feshbach), symmetry and position. The relevance of these issues is evaluated within the context of possible applications for the modeling of discharge environments and implications in the understanding of mutagenic rupture of DNA chains. The scattering calculations were carried out with the Schwinger multichannel method (SMC) [4] and its implementation with pseudopotentials (SMCPP) [5] at di®erent levels of approximation for impact energies ranging from 0.5 eV to 30 eV. References [1] B. Boudai®a, P. Cloutier, D. Hunting, M. A. Huels and L. Sanche, Science 287, 1658 (2000). [2] X. Pan, P. Cloutier, D. Hunting and L. Sanche, Phys. Rev. Lett. 90, 208102 (2003). [3] F. Martin, P. D. Burrow, Z. Cai, P. Cloutier, D. Hunting and L. Sanche, Phys. Rev. Lett. 93, 068101 (2004). [4] K. Takatsuka and V. McKoy, Phys. Rev. A 24, 2437 (1981); ibid. Phys. Rev. A 30, 1734 (1984). [5] M. H. F. Bettega, L. G. Ferreira and M. A. P. Lima, Phys. Rev. A 47, 1111 (1993).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hadron therapy is a promising technique to treat deep-seated tumors. For an accurate treatment planning, the energy deposition in the soft and hard human tissue must be well known. Water has been usually employed as a phantom of soft tissues, but other biomaterials, such as hydroxyapatite (HAp), used as bone substitute, are also relevant as a phantom for hard tissues. The stopping power of HAp for H+ and He+ beams has been studied experimentally and theoretically. The measurements have been done using the Rutherford backscattering technique in an energy range of 450-2000 keV for H+ and of 400-5000 keV for He+ projectiles. The theoretical calculations are based in the dielectric formulation together with the MELF-GOS (Mermin Energy-Loss Function – Generalized Oscillator Strengths) method [1] to describe the target excitation spectrum. A quite good agreement between the experimental data and the theoretical results has been found. The depth dose profile of H+ and He+ ion beams in HAp has been simulated by the SEICS (Simulation of Energetic Ions and Clusters through Solids) code [2], which incorporates the electronic stopping force due to the energy loss by collisions with the target electrons, including fluctuations due to the energy-loss straggling, the multiple elastic scattering with the target nuclei, with their corresponding nuclear energy loss, and the dynamical charge-exchange processes in the projectile charge state. The energy deposition by H+ and He+ as a function of the depth are compared, at several projectile energies, for HAp and liquid water, showing important differences.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Between the years 1992 and 1995 about 3.5 million hadronic Z decays were collected by the DELPHI detector at CERN. This data has been used to measure the production and lifetime of the beauty strange baryon Ξb, in the inclusive decay channel Ξb →Ξ-ℓ- X. The Ξ- baryon was reconstructed through the decay Ξ- → Λ π-, using a constrained fit method for cascade decays. An iterative discriminant analysis was used for the Ξb selection. A search for the Ξb baryon was also performed using an alternative method of reconstructing the Ξ- baryon. A measurement of the production of the charmed strange baryon Ξc in the decay channel Ξc → Ξ-π+ using the same data is also presented. The radiation monitoring system of the Silicon Microstrip Tracker in the DØ detector is studied and used to estimate the radiation dose received by the Silicon detector during normal running conditions of the TeVatron accelerator.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

[EN] Information about anaerobic energy production and mechanical efficiency that occurs over time during short-lasting maximal exercise is scarce and controversial. Bilateral leg press is an interesting muscle contraction model to estimate anaerobic energy production and mechanical efficiency during maximal exercise because it largely differs from the models used until now. This study examined the changes in muscle metabolite concentration and power output production during the first and the second half of a set of 10 repetitions to failure (10RM) of bilateral leg press exercise. On two separate days, muscle biopsies were obtained from vastus lateralis prior and immediately after a set of 5 or a set of 10 repetitions. During the second set of 5 repetitions, mean power production decreased by 19% and the average ATP utilisation accounted for by phosphagen decreased from 54% to 19%, whereas ATP utilisation from anaerobic glycolysis increased from 46 to 81%. Changes in contraction time and power output were correlated to the changes in muscle Phosphocreatine (PCr; r = -0.76; P<0.01) and lactate (r = -0.91; P<0.01), respectively, and were accompanied by parallel decreases (P<0.01-0.05) in muscle energy charge (0.6%), muscle ATP/ADP (8%) and ATP/AMP (19%) ratios, as well as by increases in ADP content (7%). The estimated average rate of ATP utilisation from anaerobic sources during the final 5 repetitions fell to 83% whereas total anaerobic ATP production increased by 9% due to a 30% longer average duration of exercise (18.4 +/- 4.0 vs 14.2 +/- 2.1 s). These data indicate that during a set of 10RM of bilateral leg press exercise there is a decrease in power output which is associated with a decrease in the contribution of PCr and/or an increase in muscle lactate. The higher energy cost per repetition during the second 5 repetitions is suggestive of decreased mechanical efficiency.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hybrid vehicles represent the future for automakers, since they allow to improve the fuel economy and to reduce the pollutant emissions. A key component of the hybrid powertrain is the Energy Storage System, that determines the ability of the vehicle to store and reuse energy. Though electrified Energy Storage Systems (ESS), based on batteries and ultracapacitors, are a proven technology, Alternative Energy Storage Systems (AESS), based on mechanical, hydraulic and pneumatic devices, are gaining interest because they give the possibility of realizing low-cost mild-hybrid vehicles. Currently, most literature of design methodologies focuses on electric ESS, which are not suitable for AESS design. In this contest, The Ohio State University has developed an Alternative Energy Storage System design methodology. This work focuses on the development of driving cycle analysis methodology that is a key component of Alternative Energy Storage System design procedure. The proposed methodology is based on a statistical approach to analyzing driving schedules that represent the vehicle typical use. Driving data are broken up into power events sequence, namely traction and braking events, and for each of them, energy-related and dynamic metrics are calculated. By means of a clustering process and statistical synthesis methods, statistically-relevant metrics are determined. These metrics define cycle representative braking events. By using these events as inputs for the Alternative Energy Storage System design methodology, different system designs are obtained. Each of them is characterized by attributes, namely system volume and weight. In the last part the work, the designs are evaluated in simulation by introducing and calculating a metric related to the energy conversion efficiency. Finally, the designs are compared accounting for attributes and efficiency values. In order to automate the driving data extraction and synthesis process, a specific script Matlab based has been developed. Results show that the driving cycle analysis methodology, based on the statistical approach, allows to extract and synthesize cycle representative data. The designs based on cycle statistically-relevant metrics are properly sized and have satisfying efficiency values with respect to the expectations. An exception is the design based on the cycle worst-case scenario, corresponding to same approach adopted by the conventional electric ESS design methodologies. In this case, a heavy system with poor efficiency is produced. The proposed new methodology seems to be a valid and consistent support for Alternative Energy Storage System design.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Resonante Laserionisations-Massenspektrometrie an Gadolinium zur Isotopenhäufigkeitsanalyse mit geringsten Mengen Die selektive Spuren- und Ultraspurenanalyse des Erdalkalielements Gadolinium eröffnet eine Vielzahl von Anwendungen in der Biomedizin und Kosmochemie. Zum Erreichen der hohen Anforderungen bezüglich Isotopen- und Isobarenselektivität von S>10^7 sowie Gesamteffizienz von e>10^-6 wurde der Einsatz der resonanten Laserionisations-Massenspektrometrie untersucht. Dazu erfolgte die Weiterentwicklung und Anpassung des existierenden Diodenlaser-Quadrupolmassenspektrometersystems. Durch Ionenflugbahn-Simulationsrechnungen wurde für das Quadrupol-Massenspektrometer die erreichbare Nachbarmassenunterdrückung und Transmission in Abhängigkeit von der Auflösung theoretisch vorhergesagt. Die Werte wurden experimentell bestätigt. Aus der beobachteten Peakstruktur erfolgte die Ableitung einer Methode zur Bestimmung der Energieunschärfe des eingesetzten Ionisationsprozesses. Zum Auffinden eines effizienten dreifach resonanten Anregungsschemas wurden die Isotopieverschiebungen und Hyperfeinstrukturen aller stabilen Gadoliniumisotope in zahlreichen Übergängen für die einfach, zweifach und dreifach resonante Ionisation präzise vermessen. Das aufgenommene Spektrum autoionisierender Resonanzen zeigte etwa 150 bislang unbekannter Zustände mit Resonanzüberhöhungen von bis zu fünf Größenordnungen im Ionisationswirkungsquerschnitt. Die entwickelte Methode der Hyperfeinzustandsselektion ermöglichte die Bestimmung der Drehimpulsquantenzahl J der autoionisierenden Resonanzen. Die analytische Charakterisierung der dreistufig resonanten Ionisation von Gadolinium ergab eine Isotopen- und Isobarenselektivität von S(Isotop)>10^12 und S(Isobar)>10^7. Die mit dem Diodenlasersystem erreichte Nachweiseffizienz von e=1-3x10^-6 mit einer untergrundlimitierten Nachweisgrenze von wenigen 10^9 Atomen Gd-158 erlaubte erste Demonstrationsmessungen an medizinischen Gewebeproben.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The worldwide demand for a clean and low-fuel-consuming transport promotes the development of safe, high energy and power electrochemical storage and conversion systems. Lithium-ion batteries (LIBs) are considered today the best technology for this application as demonstrated by the recent interest of automotive industry in hybrid (HEV) and electric vehicles (EV) based on LIBs. This thesis work, starting from the synthesis and characterization of electrode materials and the use of non-conventional electrolytes, demonstrates that LIBs with novel and safe electrolytes and electrode materials meet the targets of specific energy and power established by U.S.A. Department of Energy (DOE) for automotive application in HEV and EV. In chapter 2 is reported the origin of all chemicals used, the description of the instruments used for synthesis and chemical-physical characterizations, the electrodes preparation, the batteries configuration and the electrochemical characterization procedure of electrodes and batteries. Since the electrolyte is the main critical point of a battery, in particular in large- format modules, in chapter 3 we focused on the characterization of innovative and safe electrolytes based on ionic liquids (characterized by high boiling/decomposition points, thermal and electrochemical stability and appreciable conductivity) and mixtures of ionic liquid with conventional electrolyte. In chapter 4 is discussed the microwave accelerated sol–gel synthesis of the carbon- coated lithium iron phosphate (LiFePO 4 -C), an excellent cathode material for LIBs thanks to its intrinsic safety and tolerance to abusive conditions, which showed excellent electrochemical performance in terms of specific capacity and stability. In chapter 5 are presented the chemical-physical and electrochemical characterizations of graphite and titanium-based anode materials in different electrolytes. We also characterized a new anodic material, amorphous SnCo alloy, synthetized with a nanowire morphology that showed to strongly enhance the electrochemical stability of the material during galvanostatic full charge/discharge cycling. Finally, in chapter 6, are reported different types of batteries, assembled using the LiFePO 4 -C cathode material, different anode materials and electrolytes, characterized by deep galvanostatic charge/discharge cycles at different C-rates and by test procedures of the DOE protocol for evaluating pulse power capability and available energy. First, we tested a battery with the innovative cathode material LiFePO 4 -C and conventional graphite anode and carbonate-based electrolyte (EC DMC LiPF 6 1M) that demonstrated to surpass easily the target for power-assist HEV application. Given that the big concern of conventional lithium-ion batteries is the flammability of highly volatile organic carbonate- based electrolytes, we made safe batteries with electrolytes based on ionic liquid (IL). In order to use graphite anode in IL electrolyte we added to the IL 10% w/w of vinylene carbonate (VC) that produces a stable SEI (solid electrolyte interphase) and prevents the graphite exfoliation phenomenon. Then we assembled batteries with LiFePO 4 -C cathode, graphite anode and PYR 14 TFSI 0.4m LiTFSI with 10% w/w of VC that overcame the DOE targets for HEV application and were stable for over 275 cycles. We also assembled and characterized ―high safety‖ batteries with electrolytes based on pure IL, PYR 14 TFSI with 0.4m LiTFSI as lithium salt, and on mixture of this IL and standard electrolyte (PYR 14 TFSI 50% w/w and EC DMC LiPF 6 50% w/w), using titanium-based anodes (TiO 2 and Li 4 Ti 5 O 12 ) that are commonly considered safer than graphite in abusive conditions. The batteries bearing the pure ionic liquid did not satisfy the targets for HEV application, but the batteries with Li 4 Ti 5 O 12 anode and 50-50 mixture electrolyte were able to surpass the targets. We also assembled and characterized a lithium battery (with lithium metal anode) with a polymeric electrolyte based on poly-ethilenoxide (PEO 20 – LiCF 3 SO 3 +10%ZrO 2 ), which satisfied the targets for EV application and showed a very impressive cycling stability. In conclusion, we developed three lithium-ion batteries of different chemistries that demonstrated to be suitable for application in power-assist hybrid vehicles: graphite/EC DMC LiPF 6 /LiFePO 4 -C, graphite/PYR 14 TFSI 0.4m LiTFSI with 10% VC/LiFePO 4 -C and Li 4 T i5 O 12 /PYR 14 TFSI 50%-EC DMC LiPF 6 50%/LiFePO 4 -C. We also demonstrated that an all solid-state polymer lithium battery as Li/PEO 20 –LiCF 3 SO 3 +10%ZrO 2 /LiFePO 4 -C is suitable for application on electric vehicles. Furthermore we developed a promising anodic material alternative to the graphite, based on SnCo amorphous alloy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The reactions 32S+58,64Ni are studied at 14.5 AMeV. From this energy on, fragmentation begins to be a dominant process, although evaporation and fission are still present. After a selection of the collision mechanism, we show that important even-odd effects are present in the isotopic fragment distributions when the excitation energy is small. The staggering effect appears to be a universal feature of fragment production, slightly enhanced when the emission source is neutron poor. A closer look at the behavior of isotopic chains reveals that odd-even effects cannot be explained by pairing effects in the nuclear mass alone, but depend in a more complex way on the de-excitation chain.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In der vorliegenden Arbeit wird mittels Molekulardynamik(MD)-Computersimulationen die Dynamik von verschiedenen Alkalisilikaten in der Schmelze und im Glas untersucht. Es ist bekannt, daß diese Systeme ionenleitend sind, was auf eine hohe Mobilität der Alkaliionen im Vergleich zu den glasbildenden Komponenten Si und O zurückzuführen ist. Im Mittelpunkt des Interesses steht der sog. Mischalkalieffekt (MAE), der in ternären Mischungen aus Siliziumdioxid mit zwei Alkalioxiden auftritt. Gegenüber Mischungen mit nur einer Alkaliionensorte weisen letztere Systeme eine signifikante Verlangsamung der Alkaliionendiffusion auf. Zunächst werden zwei binäre Alkalisilikate simuliert, nämlich Lithiumdisilikat (LS2) und Kaliumdisilikat (KS2). Die Simulationen zeigen, daß der Ursprung der hohen Mobilität der Alkaliionen in der Struktur begründet ist. KS2 und LS2 weisen auf intermediären Längenskalen Ordnung auf, die in partiellen statischen Strukturfaktoren durch Prepeaks reflektiert ist. Die den Prepeaks zugrundeliegende Struktur erklärt sich durch perkolierende Netzwerke aus alkalioxidreichen Kanälen, die als Diffusionskanäle für die mobilen Alkaliionen fungieren. In diesen Kanälen bewegen sich die Ionen mittels Sprüngen (Hopping) zwischen ausgezeichneten Plätzen. In der Simulation beobachtet man für die hohen Temperaturen (4000K>=1500K) eine ähnliche Aktivierungsenergie wie im Experiment. Im Experiment findet allerdings unterhalb von ca.1200K ein Crossover in ein Arrheniusverhalten mit höherer Aktivierungsenergie statt, welches von der Simulation nicht nachvollzogen wird. Das kann mit der in der Simulation nicht im Gleichgewicht befindlichen Si-O-Matrix erklärt werden, bei der Alterungseffekte beobachtet werden. Am stärksten ist der MAE für eine Alkalikomponente, wenn deren Konzentrationsanteil in einem ternären Mischalkalisystem gegen 0 geht. Daher wird ein LS2-System untersucht, in dem ein Li-Ion gegen ein K-Ion getauscht wird. Der Einfluß des K-Ions ist sowohl lokal in den charakteristischen Abständen zu den ersten nächsten Nachbarn (NN) zu sehen, als auch in der ortsaufgelösten Koordinationszahlverteilung bis zu Längenskalen von ca. 8,5 Angstrom. Die Untersuchung der Dynamik des eingesetzten K-Ions zeigt, daß die Sprungwahrscheinlichkeit nicht mit der Lokalisierung, einem Maß für die Bewegung eines Teilchens um seine Ruheposition, korreliert ist, aber daß eine chemische Umgebung mit wenig Li- und vielen O-NN oder vielen Li- und wenig O-NN ein Sprungereignis begünstigt. Zuletzt wird ein ternäres Alkalisilikat (LKS2) untersucht, dessen Struktur alle charakteristischen Längenskalen von LS2 und KS2 aufweist. Es stellt sich also eine komplexe Struktur mit zwei perkolierenden Subnetzwerken für Alkaliionen ein. Die Untersuchung der Dynamik zeigt eine geringe Wahrscheinlichkeit dafür auf, daß Ionen in ein Subnetzwerk andersnamiger Ionen springen. Auch kann gezeigt werden, daß das Modellpotential den MAE reproduzieren kann, daß also die Diffusionskonstanten in LKS2 bei bis zu einer Größenordnung langsamer sind als in KS2 bzw. LS2. Der beobachtete Effekt stellt sich zudem vom funktionalen Verlauf her so dar, wie er beim MAE erwartet wird. Es wurde auch festgestellt, daß trotz der zeitlichen Verzögerung in den dynamischen Größen die Anzahl der Sprünge pro Zeit nicht geringer ist und daß für niedrige Temperaturen (d.h.im Glas) Sprünge auf den Nachbarplatz mit anschließendem Rücksprung auf die vorherige Position deutlich wahrscheinlicher sind als bei hohen Temperaturen (also in der Schmelze). Die vorliegenden Resultate geben Aufschluß über die Details der Mechanismen mikroskopischer Ionenleitung in binären und ternären Alkalisilikaten sowie dem MAE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Proper ion channels’ functioning is a prerequisite for a normal cell and disorders involving ion channels, or channelopathies, underlie many human diseases. Long QT syndromes (LQTS) for example may arise from the malfunctioning of hERG channel, caused either by the binding of drugs or mutations in HERG gene. In the first part of this thesis I present a framework to investigate the mechanism of ion conduction through hERG channel. The free energy profile governing the elementary steps of ion translocation in the pore was computed by means of umbrella sampling simulations. Compared to previous studies, we detected a different dynamic behavior: according to our data hERG is more likely to mediate a conduction mechanism which has been referred to as “single-vacancy-like” by Roux and coworkers (2001), rather then a “knock-on” mechanism. The same protocol was applied to a model of hERG presenting the Gly628Ser mutation, found to be cause of congenital LQTS. The results provided interesting insights about the reason of the malfunctioning of the mutant channel. Since they have critical functions in viruses’ life cycle, viral ion channels, such as M2 proton channel, are considered attractive targets for antiviral therapy. A deep knowledge of the mechanisms that the virus employs to survive in the host cell is of primary importance in the identification of new antiviral strategies. In the second part of this thesis I shed light on the role that M2 plays in the control of electrical potential inside the virus, being the charge equilibration a condition required to allow proton influx. The ion conduction through M2 was simulated using metadynamics technique. Based on our results we suggest that a potential anion-mediated cation-proton exchange, as well as a direct anion-proton exchange could both contribute to explain the activity of the M2 channel.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The laser driven ion acceleration is a burgeoning field of resarch and is attracting a growing number of scientists since the first results reported in 2000 obtained irradiating thin solid foils by high power laser pulses. The growing interest is driven by the peculiar characteristics of the produced bunches, the compactness of the whole accelerating system and the very short accelerating length of this all-optical accelerators. A fervent theoretical and experimental work has been done since then. An important part of the theoretical study is done by means of numerical simulations and the most widely used technique exploits PIC codes (“Particle In Cell'”). In this thesis the PIC code AlaDyn, developed by our research group considering innovative algorithms, is described. My work has been devoted to the developement of the code and the investigation of the laser driven ion acceleration for different target configurations. Two target configurations for the proton acceleration are presented together with the results of the 2D and 3D numerical investigation. One target configuration consists of a solid foil with a low density layer attached on the irradiated side. The nearly critical plasma of the foam layer allows a very high energy absorption by the target and an increase of the proton energy up to a factor 3, when compared to the ``pure'' TNSA configuration. The differences of the regime with respect to the standard TNSA are described The case of nearly critical density targets has been investigated with 3D simulations. In this case the laser travels throughout the plasma and exits on the rear side. During the propagation, the laser drills a channel and induce a magnetic vortex that expanding on the rear side of the targer is source of a very intense electric field. The protons of the plasma are strongly accelerated up to energies of 100 MeV using a 200PW laser.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recent developments in the theory of plasma-based collisionally excited x-ray lasers (XRL) have shown an optimization potential based on the dependence of the absorption region of the pumping laser on its angle of incidence on the plasma. For the experimental proof of this idea, a number of diagnostic schemes were developed, tested, qualified and applied. A high-resolution imaging system, yielding the keV emission profile perpendicular to the target surface, provided positions of the hottest plasma regions, interesting for the benchmarking of plasma simulation codes. The implementation of a highly efficient spectrometer for the plasma emission made it possible to gain information about the abundance of the ionization states necessary for the laser action in the plasma. The intensity distribution and deflection angle of the pump laser beam could be imaged for single XRL shots, giving access to its refraction process within the plasma. During a European collaboration campaign at the Lund Laser Center, Sweden, the optimization of the pumping laser incidence angle resulted in a reduction of the required pumping energy for a Ni-like Mo XRL, which enabled the operation at a repetition rate of 10 Hz. Using the experiences gained there, the XRL performance at the PHELIX facility, GSI Darmstadt with respect to achievable repetition rate and at wavelengths below 20 nm was significantly improved, and also important information for the development towards multi-100 eV plasma XRLs was acquired. Due to the setup improvements achieved during the work for this thesis, the PHELIX XRL system now has reached a degree of reproducibility and versatility which is sufficient for demanding applications like the XRL spectroscopy of heavy ions. In addition, a European research campaign, aiming towards plasma XRLs approaching the water-window (wavelengths below 5 nm) was initiated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this thesis three measurements of top-antitop differential cross section at an energy in the center of mass of 7 TeV will be shown, as a function of the transverse momentum, the mass and the rapidity of the top-antitop system. The analysis has been carried over a data sample of about 5/fb recorded with the ATLAS detector. The events have been selected with a cut based approach in the "one lepton plus jets" channel, where the lepton can be either an electron or a muon. The most relevant backgrounds (multi-jet QCD and W+jets) have been extracted using data driven methods; the others (Z+ jets, diboson and single top) have been simulated with Monte Carlo techniques. The final, background-subtracted, distributions have been corrected, using unfolding methods, for the detector and selection effects. At the end, the results have been compared with the theoretical predictions. The measurements are dominated by the systematic uncertainties and show no relevant deviation from the Standard Model predictions.