826 resultados para indium phosphide
Resumo:
The main objective of this paper is to review the state of the art of residential PV systems in France. This is done analyzing the operational data of 6868 installations. Three main questions are posed. How much energy do they produce? What level of performance is associated to their production? Which are the key parameters that most influence their quality? During the year 2010, the PV systems in France have produced a mean annual energy of 1163 kWh/kWp. As a whole, the orientation of PV generators causes energy productions to be some 7% inferior to optimally oriented PV systems. The mean Performance Ratio is 76% and the mean Performance Index is 85%. That is to say, the energy produced by a typical PV system in France is 15% inferior to the energy produced by a very high quality PV system. On average, the real power of the PV modules falls 4.9% below its corresponding nominal power announced on the manufacturer's datasheet. A brief analysis by PV modules technology has led to relevant observations about two technologies in particular. On the one hand, the PV systems equipped with heterojunction with intrinsic thin layer (HIT) modules show performances higher than average. On the other hand, the systems equipped with the copper indium (di)selenide (CIS) modules show a real power that is 16% lower than their nominal value.
Resumo:
We report on properties of high quality ~60 nm thick InAlN layers nearly in-plane lattice-matched to GaN, grown on c-plane GaN-on-sapphire templates by plasma-assisted molecular beam epitaxy. Excellent crystalline quality and low surface roughness are confirmed by X-ray diffraction, transmission electron microscopy, and atomic force microscopy. High annular dark field observations reveal a periodic in-plane indium content variation (8 nm period), whereas optical measurements evidence certain residual absorption below the band-gap. The indium fluctuation is estimated to be +/- 1.2% around the nominal 17% indium content via plasmon energy oscillations assessed by electron energy loss spectroscopy with sub-nanometric spatial resolution.
Resumo:
Indium nitride (InN) has been the subject of intense research in recent years. Some of its most attractive features are its excellent transport properties such as its small band edge electron effective mass, high electron mobilities and peak drift velocities, and high frequency transient drift velocity oscillations [1]. These suggest enormous potential applications for InN in high frequency electronic devices. But to date the high unintentional bulk electron concentration (n~1018 cm-3) of undoped InN samples and the surface electron accumulation layer make it a hard task to create a reliable metalsemiconductor Schottky barrier. Some attempts have been made to overcome this problem by means of material oxidation [2] or deposition of insulators [3]. In this work we present a way to obtain an electrical rectification behaviour by means of heterojunction growth. Due to the big band gap differences among nitride semiconductors, it’s possible to create a structure with high band offsets. In InN/GaN heterojunctions, depending on the GaN doping, the magnitude of conduction and valence band offset are critical parameters which allow distinguishing among different electrical behaviours. The earliest estimate of the valence band offset at an InN–GaN heterojunction in a wurtzite structure was measured to be ~0.85 eV [4], while the Schottky barrier heights were determined to be ~ 1,4 eV [5].We grew In-face InN layer with varying thickness (between 150 nm and 1 mm) by plasma assisted molecular beam epitaxy (PA-MBE) on GaNntemplates (GaN/Al2O3), with temperatures ranging between 300°C and 450°C. The different doping in GaN template (Si doping, Fe doping and Mg doping) results in differences in band alignments of the two semiconductors changing electrical barriers for carriers and consequently electrical conduction behaviour. The processing of the devices includes metallization of the ohmic contacts on InN and GaN, for which we used Ti/Al/Ni/Au. Whereas an ohmic contact on InN is straightforward, the main issue was the fabrication of the contact on GaN due to the very low decomposition temperature of InN. A standard ohmic contact on GaN is generally obtained by high temperature rapid thermal annealing (RTA), typically done between 500ºC and 900ºC[6]. In this case, the limitation due to the presence of In-face InN imposes an upper limit on the temperature for the thermal annealing process and ohmic contact formation of about 450°C. We will present results on the morphology of the InN layers by X-Ray diffraction and SEM, and electrical measurements, in particular current-voltage and capacitance-voltage characteristics.
Resumo:
Within the framework of cost-effective patterning processes a novel technique that saves photolithographic processing steps, easily scalable to wide area production, is proposed. It consists of a tip-probe, which is biased with respect to a conductive substrate and slides on it, keeping contact with the material. The sliding tip leaves an insulating path (which currently is as narrow as 30 μm) across the material, which enables the drawing of tracks and pads electrically insulated from the surroundings. This ablation method, called arc-erosion, requires an experimental set up that had to be customized for this purpose and is described. Upon instrumental monitoring, a brief proposal of the physics below this process is also presented. As a result an optimal control of the patterning process has been acquired. The system has been used on different substrates, including indium tin oxide either on glass or on polyethylene terephtalate, as well as alloys like Au/Cr, and Al. The influence of conditions such as tip speed and applied voltage is discussed
Resumo:
The main objective of this paper is to review the state of the art of residential PV systems in France and Belgium. This is done analyzing the operational data of 10650 PV systems (9657 located in France and 993 in Belgium). Three main questions are posed. How much energy do they produce? What level of performance is associated to their production? Which are the key parameters that most influence their quality? During the year 2010, the PV systems in France have produced a mean annual energy of 1163 kWh/kWp in France and 852 kWh/kWp in Belgium. As a whole, the orientation of PV generators causes energy productions to be some 7% inferior to optimally oriented PV systems. The mean Performance Ratio is 76% in France and 78% in Belgium, and the mean Performance Index is 85% in both countries. On average, the real power of the PV modules falls 4.9% below its corresponding nominal power announced on the manufacturer?s datasheet. A brief analysis by PV modules technology has lead to relevant observations about two technologies in particular. On the one hand, the PV systems equipped with Heterojunction with Intrinsic. Thin layer (HIT) modules show performances higher than average. On the other hand, the systems equipped with Copper Indium (di)Selenide (CIS) modules show a real power that is 16 % lower than their nominal value.
Resumo:
Diluted nitride self-assembled In(Ga)AsN quantum dots (QDs) grown on GaAs substrates are potential candidates to emit in the windows of maximum transmittance for optical fibres (1.3-1.55 μm). In this paper, we analyse the effect of nitrogen addition on the indium desorption occurring during the capping process of InxGa1−xAs QDs (x = l and 0.7). The samples have been grown by molecular beam epitaxy and studied through transmission electron microscopy (TEM) and photoluminescence techniques. The composition distribution inside the dots was determined by statistical moiré analysis and measured by energy dispersive X-ray spectroscopy. First, the addition of nitrogen in In(Ga)As QDs gave rise to a strong redshift in the emission peak, together with a large loss of intensity and monochromaticity. Moreover, these samples showed changes in the QDs morphology as well as an increase in the density of defects. The statistical compositional analysis displayed a normal distribution in InAs QDs with an average In content of 0.7. Nevertheless, the addition of Ga and/or N leads to a bimodal distribution of the Indium content with two separated QD populations. We suggest that the nitrogen incorporation enhances the indium fixation inside the QDs where the indium/gallium ratio plays an important role in this process. The strong redshift observed in the PL should be explained not only by the N incorporation but also by the higher In content inside the QDs
Resumo:
The high lattice mismatch between III-nitride binaries (InN, GaN and AlN) remains a key problem to grow high quality III-nitride heterostructures. Recent interest has been focused on the growth of high-quality InAlN layers, with approximately 18% of indium incorporation, in-plane lattice-matched (LM) to GaN. While a lot of work has been done by metal-organic vapour phase epitaxy (MOVPE) by Carlin and co-workers, its growth by molecular beam epitaxy (MBE) is still in infancy
Resumo:
Esta tesis se centra en el estudio y desarrollo de dispositivos de aplicación basados en cristal líquido polimérico. Las propiedades de los cristales líquidos los hacen interesantes para su uso en el desarrollo de dispositivos de seguridad para autenticación de productos y marcas, y detección y prevención de falsificaciones. Asimismo, pueden ser muy útiles para fabricar dispositivos basados en CLs dispersos en polímero, los cuales tienen a su vez múltiples aplicaciones. La orientación de las moléculas de cristal líquido y la birrefringencia son las dos características principales que afectan a las propiedades de estos dispositivos. Un dispositivo de cristal líquido estándar consiste en un sándwich formado por dos sustratos de vidrio transparente, dotados con electrodo de ITO (Indium Tin Oxide) en su superficie interna, que confinan el cristal líquido en su interior. En la primera parte de esta tesis se describen las características más importantes que describen una célula de cristal líquido. Esta introducción básica en necesaria para la correcta comprensión de los capítulos posteriores en los que se detalla el desarrollo concreto de los dispositivos desarrollados en la investigación llevada a cabo. Por ejemplo, en el caso de los dispositivos de seguridad se han eliminado los sustratos de vidrio (en la última fase de su desarrollo) para conseguir dispositivos flexibles. En la segunda parte de la tesis se incluye la descripción completa de los dispositivos fabricados, así como de los protocolos de fabricación seguidos y diseñados específicamente para ello. También se detallan en esta parte los resultados obtenidos, así como las propiedades ópticas y electroópticas en cada caso, y el/los equipos de caracterización utilizados. Utilizando cristal líquido nemático y colorante dicroico, se han desarrollado dispositivos que contienen múltiples imágenes latentes en cada cara del mismo. Utilizando distintas técnicas de alineamiento se consigue crear cualquier tipo de motivo latente, ya sean símbolos sencillos, figuras, logotipos o incluso imágenes con escala de gris. Cuanto más complejo es el dispositivo, mayor es la dificultad para reproducirlo en una eventual falsificación. Para visualizar e identificar los motivos es necesario emplear luz polarizada, por ejemplo, con la ayuda de un sencillo polarizador lineal. Dependiendo de si el polarizador está colocado delante del dispositivo o detrás del él, se mostrarán las imágenes generadas en una u otra cara. Este efecto es posible gracias al colorante dicroico añadido al CL, a la orientación inducida sobre las moléculas, y a la estructura de twist utilizada en los dispositivos. En realidad, para ver el efecto de los dispositivos no es necesario el uso de un polarizador, basta con el reflejo de una superficie dielétrica (percialmente polarizado), o la luz emitida por la pantalla de dispositivos de consumo comunes como un televisor LCD, un monitor de ordenador o un “smartphone”. Por otro lado, utilizando una mezcla entre un CL nemático polimérico y un CL nemático no polimérico es posible fabricar dispositivos LCPC (Liquid Crystal Polymer Composite) con propiedades electroópticas muy interesantes, que funcionan a tensiones de conmutación bajas. El CL polimérico conforma una estructura de red en el interior del sándwich que mantiene confinado al CL nemático en pequeños microdominios. Se han fabricado dispositivos LCPC con conmutación inversa utilizando tanto alineamiento homogéneo como homeotrópico. Debido a que tanto la estructura de CL polimérico como el CL nemático que rellena los microdominios están orientados en una misma dirección de alineamiento preinducida, la luz dispersada por el dispositivo se encuentra polarizada. La dirección de polarización coincide con la dirección de alineamiento. La innovación aportada por esta investigación: un nuevo dispositivo LCPC inverso de respuesta ultrarápida y polarizada basado en la mezcla de dos CL nemáticos y, un dispositivo de seguridad y autenticación, patentado internacionalmente, basado en CL nemáticos dopados con colorante dicroico. Abstract This thesis is centered on the availability to use polymerizable liquid crystals to develop non-display application LC devices. Liquid crystal properties make them useful for the development of security devices in applications of authentication and detection of fakes, and also to achieve polymer dispersed LC devices to be used for different applications that will be studied here. Induced orientation of liquid crystal molecules and birefringence are the two main properties used in these devices. A standard liquid crystal device is a sandwich consisting of two parallel glass substrates carrying a thin transparent ITO (Indium‐Tin‐Oxide) electrode on their inner surfaces with the liquid crystal in the middle. The first part of this thesis will describe the most important parameters describing a liquid crystal cell. This basis is necessary for the understanding of later chapters where models of the liquid crystal devices will be discussed and developed. In the case of security devices the standard structure of an LC device has been modified by eliminating the glass substrates in order to achieve plastic and flexible devices. The second part of the thesis includes a detailed description of the devices achieved and the manufacturing protocols that have been developed ad-hoc. The optical and electrooptical properties and the characterization equipment are described here as well. Employing nematic liquid crystal and dichroic colorants, we have developed devices that show, with the aid of a polarizer, multiple images on each side of the device. By different alignment techniques it is possible to create any kind of symbols, drawings or motifs with a grayscale; the more complex the created device is, the more difficult is to fake it. To identify the motifs it is necessary to use polarized light. Depending on whether the polarizer is located in front of the LC cell or behind it, different motifs from one or the other substrate are shown. The effect arises from the dopant color dye added to the liquid crystal, the induced orientation and the twist structure. In practice, a grazing reflection on a dielectric surface is polarized enough to see the effect. Any LC flat panel display (LCD TV, computer, mobile phone) can obviously be used as backlight as well. On the other hand, by using a mixture of polymerizable and non-polymerizable nematics liquid crystals it is also possible to achieve LCPC (Liquid Crystal Polymer Composite) devices that show really interesting electrooptical characteristics using low switching voltages. Polymerizable LC creates a hollow structure inside the sandwich glass cell that keep nematics liquid crystal confined creating microdomains. Homogeneous and homeotropic alignments have been used to develop inverse switching mode LCPCs. Due to the double LC oriented structure, the outgoing scattered light from these devices is already polarized. The polarization axis coincides with LC molecules director, the alignment direction promoted. The novelties derived from the investigation presented here, new ultrafast inverse LCPC with polarized outgoing scattered light based on oriented nematic LC mixture, and an internationally patented security and authentication device based on nematics (doped with dichroic dye) oriented polymerizable LC.
Resumo:
The pH response of GaN/AlInN/AlN/GaN ion-sensitive field effect transistor (ISFET) on Si substrates has been characterized. We analyzed the variation of the surface potential (ΔVsp/ΔpH) and current (ΔIds/ΔpH) with solution pH in devices with the same indium content (17%, in-plane lattice-matched to GaN) and different AlInN thickness (6 nm and 10 nm), and compared with the literature. The shrinkage of the barrier, that has the effect to increase the transconductance of the device, makes the 2-dimensional electron density (2DEG) at the interface very sensitive to changes in the surface. Although the surface potential sensitivity to pH is similar in the two devices, the current change with pH (ΔIds/ΔpH), when biasing the ISFET by a Ag/AgCl reference electrode, is almost 50% higher in the device with 6 nm AlInN barrier, compared to the device with 10 nm barrier. When measuring the current response (ΔIds/ΔpH) without reference electrode, the device with thinner AlInN layer has a larger response than the thicker one, of a factor of 140%, and that current response without reference electrode is only 22% lower than its maximum response obtained using reference electrode.