849 resultados para hybrid dynamical system
Resumo:
A power transformer needs continuous monitoring and fast protection as it is a very expensive piece of equipment and an essential element in an electrical power system. The most common protection technique used is the percentage differential logic, which provides discrimination between an internal fault and different operating conditions. Unfortunately, there are some operating conditions of power transformers that can mislead the conventional protection affecting the power system stability negatively. This study proposes the development of a new algorithm to improve the protection performance by using fuzzy logic, artificial neural networks and genetic algorithms. An electrical power system was modelled using Alternative Transients Program software to obtain the operational conditions and fault situations needed to test the algorithm developed, as well as a commercial differential relay. Results show improved reliability, as well as a fast response of the proposed technique when compared with conventional ones.
Resumo:
This paper addressed the problem of water-demand forecasting for real-time operation of water supply systems. The present study was conducted to identify the best fit model using hourly consumption data from the water supply system of Araraquara, Sa approximate to o Paulo, Brazil. Artificial neural networks (ANNs) were used in view of their enhanced capability to match or even improve on the regression model forecasts. The ANNs used were the multilayer perceptron with the back-propagation algorithm (MLP-BP), the dynamic neural network (DAN2), and two hybrid ANNs. The hybrid models used the error produced by the Fourier series forecasting as input to the MLP-BP and DAN2, called ANN-H and DAN2-H, respectively. The tested inputs for the neural network were selected literature and correlation analysis. The results from the hybrid models were promising, DAN2 performing better than the tested MLP-BP models. DAN2-H, identified as the best model, produced a mean absolute error (MAE) of 3.3 L/s and 2.8 L/s for training and test set, respectively, for the prediction of the next hour, which represented about 12% of the average consumption. The best forecasting model for the next 24 hours was again DAN2-H, which outperformed other compared models, and produced a MAE of 3.1 L/s and 3.0 L/s for training and test set respectively, which represented about 12% of average consumption. DOI: 10.1061/(ASCE)WR.1943-5452.0000177. (C) 2012 American Society of Civil Engineers.
Resumo:
We analyse the dependence of the luminosity function (LF) of galaxies in groups on group dynamical state. We use the Gaussianity of the velocity distribution of galaxy members as a measurement of the dynamical equilibrium of groups identified in the Sloan Digital Sky Survey Data Release 7 by Zandivarez & Martinez. We apply the Anderson-Darling goodness-of-fit test to distinguish between groups according to whether they have Gaussian or non-Gaussian velocity distributions, i.e. whether they are relaxed or not. For these two subsamples, we compute the (0.1)r-band LF as a function of group virial mass and group total luminosity. For massive groups, , we find statistically significant differences between the LF of the two subsamples: the LFs of groups that have Gaussian velocity distributions have a brighter characteristic absolute magnitude (similar to 0.3 mag) and a steeper faint-end slope (similar to 0.25). We detect a similar effect when comparing the LF of bright [M-0.1r(group) - 5log(h) < -23.5] Gaussian and non-Gaussian groups. Our results indicate that, for massive/luminous groups, the dynamical state of the system is directly related to the luminosity of its galaxy members.
Resumo:
Companies are currently choosing to integrate logics and systems to achieve better solutions. These combinations also include companies striving to join the logic of material requirement planning (MRP) system with the systems of lean production. The purpose of this article was to design an MRP as part of the implementation of an enterprise resource planning (ERP) in a company that produces agricultural implements, which has used the lean production system since 1998. This proposal is based on the innovation theory, theory networks, lean production systems, ERP systems and the hybrid production systems, which use both components and MRP systems, as concepts of lean production systems. The analytical approach of innovation networks enables verification of the links and relationships among the companies and departments of the same corporation. The analysis begins with the MRP implementation project carried out in a Brazilian metallurgical company and follows through the operationalisation of the MRP project, until its production stabilisation. The main point is that the MRP system should help the company's operations with regard to its effective agility to respond in time to demand fluctuations, facilitating the creation process and controlling the branch offices in other countries that use components produced in the matrix, hence ensuring more accurate estimates of stockpiles. Consequently, it presents the enterprise knowledge development organisational modelling methodology in order to represent further models (goals, actors and resources, business rules, business process and concepts) that should be included in this MRP implementation process for the new configuration of the production system.
Resumo:
The harmonic oscillations of a Duffing oscillator driven by a limited power supply are investigated as a function of the alternative strength of the rotor. The semi-trivial and non-trivial solutions are derived. We examine the stability of these solutions and then explore the complex behaviors associated with the bifurcations sequences. Interestingly, a 3D diagram provides a global view of the effects of alternate strength on the appearance of chaos and hyperchaos on the system.
Resumo:
This communication reports a promising platform for rapid, simple, direct, and ultrasensitive determination of serotonin. The method is related to integration of vertically aligned single-walled carbon nanotubes (SWCNTs) in electrochemical microfluidic devices. The required microfabrication protocol is simple and fast. In addition, the nanomaterial influenced remarkably the obtained limit-of-detection (LOD) values. Our system achieved a LOD of 0.2 nmol L-1 for serotonin, to the best of our knowledge one of the lowest values reported in the literature.
Resumo:
Máster en Oceanografía
Resumo:
Supramolecular architectures can be built-up from a single molecular component (building block) to obtain a complex of organic or inorganic interactions creating a new emergent condensed phase of matter, such as gels, liquid crystals and solid crystal. Further the generation of multicomponent supramolecular hybrid architecture, a mix of organic and inorganic components, increases the complexity of the condensed aggregate with functional properties useful for important areas of research, like material science, medicine and nanotechnology. One may design a molecule storing a recognition pattern and programming a informed self-organization process enables to grow-up into a hierarchical architecture. From a molecular level to a supramolecular level, in a bottom-up fashion, it is possible to create a new emergent structure-function, where the system, as a whole, is open to its own environment to exchange energy, matter and information. “The emergent property of the whole assembly is superior to the sum of a singles parts”. In this thesis I present new architectures and functional materials built through the selfassembly of guanosine, in the absence or in the presence of a cation, in solution and on the surface. By appropriate manipulation of intermolecular non-covalent interactions the spatial (structural) and temporal (dynamic) features of these supramolecular architectures are controlled. Guanosine G7 (5',3'-di-decanoil-deoxi-guanosine) is able to interconvert reversibly between a supramolecular polymer and a discrete octameric species by dynamic cation binding and release. Guanosine G16 (2',3'-O-Isopropylidene-5'-O-decylguanosine) shows selectivity binding from a mix of different cation's nature. Remarkably, reversibility, selectivity, adaptability and serendipity are mutual features to appreciate the creativity of a molecular self-organization complex system into a multilevelscale hierarchical growth. The creativity - in general sense, the creation of a new thing, a new thinking, a new functionality or a new structure - emerges from a contamination process of different disciplines such as biology, chemistry, physics, architecture, design, philosophy and science of complexity.
Resumo:
Hybrid vehicles represent the future for automakers, since they allow to improve the fuel economy and to reduce the pollutant emissions. A key component of the hybrid powertrain is the Energy Storage System, that determines the ability of the vehicle to store and reuse energy. Though electrified Energy Storage Systems (ESS), based on batteries and ultracapacitors, are a proven technology, Alternative Energy Storage Systems (AESS), based on mechanical, hydraulic and pneumatic devices, are gaining interest because they give the possibility of realizing low-cost mild-hybrid vehicles. Currently, most literature of design methodologies focuses on electric ESS, which are not suitable for AESS design. In this contest, The Ohio State University has developed an Alternative Energy Storage System design methodology. This work focuses on the development of driving cycle analysis methodology that is a key component of Alternative Energy Storage System design procedure. The proposed methodology is based on a statistical approach to analyzing driving schedules that represent the vehicle typical use. Driving data are broken up into power events sequence, namely traction and braking events, and for each of them, energy-related and dynamic metrics are calculated. By means of a clustering process and statistical synthesis methods, statistically-relevant metrics are determined. These metrics define cycle representative braking events. By using these events as inputs for the Alternative Energy Storage System design methodology, different system designs are obtained. Each of them is characterized by attributes, namely system volume and weight. In the last part the work, the designs are evaluated in simulation by introducing and calculating a metric related to the energy conversion efficiency. Finally, the designs are compared accounting for attributes and efficiency values. In order to automate the driving data extraction and synthesis process, a specific script Matlab based has been developed. Results show that the driving cycle analysis methodology, based on the statistical approach, allows to extract and synthesize cycle representative data. The designs based on cycle statistically-relevant metrics are properly sized and have satisfying efficiency values with respect to the expectations. An exception is the design based on the cycle worst-case scenario, corresponding to same approach adopted by the conventional electric ESS design methodologies. In this case, a heavy system with poor efficiency is produced. The proposed new methodology seems to be a valid and consistent support for Alternative Energy Storage System design.
Resumo:
This work presents exact, hybrid algorithms for mixed resource Allocation and Scheduling problems; in general terms, those consist into assigning over time finite capacity resources to a set of precedence connected activities. The proposed methods have broad applicability, but are mainly motivated by applications in the field of Embedded System Design. In particular, high-performance embedded computing recently witnessed the shift from single CPU platforms with application-specific accelerators to programmable Multi Processor Systems-on-Chip (MPSoCs). Those allow higher flexibility, real time performance and low energy consumption, but the programmer must be able to effectively exploit the platform parallelism. This raises interest in the development of algorithmic techniques to be embedded in CAD tools; in particular, given a specific application and platform, the objective if to perform optimal allocation of hardware resources and to compute an execution schedule. On this regard, since embedded systems tend to run the same set of applications for their entire lifetime, off-line, exact optimization approaches are particularly appealing. Quite surprisingly, the use of exact algorithms has not been well investigated so far; this is in part motivated by the complexity of integrated allocation and scheduling, setting tough challenges for ``pure'' combinatorial methods. The use of hybrid CP/OR approaches presents the opportunity to exploit mutual advantages of different methods, while compensating for their weaknesses. In this work, we consider in first instance an Allocation and Scheduling problem over the Cell BE processor by Sony, IBM and Toshiba; we propose three different solution methods, leveraging decomposition, cut generation and heuristic guided search. Next, we face Allocation and Scheduling of so-called Conditional Task Graphs, explicitly accounting for branches with outcome not known at design time; we extend the CP scheduling framework to effectively deal with the introduced stochastic elements. Finally, we address Allocation and Scheduling with uncertain, bounded execution times, via conflict based tree search; we introduce a simple and flexible time model to take into account duration variability and provide an efficient conflict detection method. The proposed approaches achieve good results on practical size problem, thus demonstrating the use of exact approaches for system design is feasible. Furthermore, the developed techniques bring significant contributions to combinatorial optimization methods.
Resumo:
Hybrid technologies, thanks to the convergence of integrated microelectronic devices and new class of microfluidic structures could open new perspectives to the way how nanoscale events are discovered, monitored and controlled. The key point of this thesis is to evaluate the impact of such an approach into applications of ion-channel High Throughput Screening (HTS)platforms. This approach offers promising opportunities for the development of new classes of sensitive, reliable and cheap sensors. There are numerous advantages of embedding microelectronic readout structures strictly coupled to sensing elements. On the one hand the signal-to-noise-ratio is increased as a result of scaling. On the other, the readout miniaturization allows organization of sensors into arrays, increasing the capability of the platform in terms of number of acquired data, as required in the HTS approach, to improve sensing accuracy and reliabiity. However, accurate interface design is required to establish efficient communication between ionic-based and electronic-based signals. The work made in this thesis will show a first example of a complete parallel readout system with single ion channel resolution, using a compact and scalable hybrid architecture suitable to be interfaced to large array of sensors, ensuring simultaneous signal recording and smart control of the signal-to-noise ratio and bandwidth trade off. More specifically, an array of microfluidic polymer structures, hosting artificial lipid bilayers blocks where single ion channel pores are embededed, is coupled with an array of ultra-low noise current amplifiers for signal amplification and data processing. As demonstrating working example, the platform was used to acquire ultra small currents derived by single non-covalent molecular binding between alpha-hemolysin pores and beta-cyclodextrin molecules in artificial lipid membranes.
Resumo:
A main objective of the human movement analysis is the quantitative description of joint kinematics and kinetics. This information may have great possibility to address clinical problems both in orthopaedics and motor rehabilitation. Previous studies have shown that the assessment of kinematics and kinetics from stereophotogrammetric data necessitates a setup phase, special equipment and expertise to operate. Besides, this procedure may cause feeling of uneasiness on the subjects and may hinder with their walking. The general aim of this thesis is the implementation and evaluation of new 2D markerless techniques, in order to contribute to the development of an alternative technique to the traditional stereophotogrammetric techniques. At first, the focus of the study has been the estimation of the ankle-foot complex kinematics during stance phase of the gait. Two particular cases were considered: subjects barefoot and subjects wearing ankle socks. The use of socks was investigated in view of the development of the hybrid method proposed in this work. Different algorithms were analyzed, evaluated and implemented in order to have a 2D markerless solution to estimate the kinematics for both cases. The validation of the proposed technique was done with a traditional stereophotogrammetric system. The implementation of the technique leads towards an easy to configure (and more comfortable for the subject) alternative to the traditional stereophotogrammetric system. Then, the abovementioned technique has been improved so that the measurement of knee flexion/extension could be done with a 2D markerless technique. The main changes on the implementation were on occlusion handling and background segmentation. With the additional constraints, the proposed technique was applied to the estimation of knee flexion/extension and compared with a traditional stereophotogrammetric system. Results showed that the knee flexion/extension estimation from traditional stereophotogrammetric system and the proposed markerless system were highly comparable, making the latter a potential alternative for clinical use. A contribution has also been given in the estimation of lower limb kinematics of the children with cerebral palsy (CP). For this purpose, a hybrid technique, which uses high-cut underwear and ankle socks as “segmental markers” in combination with a markerless methodology, was proposed. The proposed hybrid technique is different than the abovementioned markerless technique in terms of the algorithm chosen. Results showed that the proposed hybrid technique can become a simple and low-cost alternative to the traditional stereophotogrammetric systems.
Resumo:
Synthetic biology has recently had a great development, many papers have been published and many applications have been presented, spanning from the production of biopharmacheuticals to the synthesis of bioenergetic substrates or industrial catalysts. But, despite these advances, most of the applications are quite simple and don’t fully exploit the potential of this discipline. This limitation in complexity has many causes, like the incomplete characterization of some components, or the intrinsic variability of the biological systems, but one of the most important reasons is the incapability of the cell to sustain the additional metabolic burden introduced by a complex circuit. The objective of the project, of which this work is part, is trying to solve this problem through the engineering of a multicellular behaviour in prokaryotic cells. This system will introduce a cooperative behaviour that will allow to implement complex functionalities, that can’t be obtained with a single cell. In particular the goal is to implement the Leader Election, this procedure has been firstly devised in the field of distributed computing, to identify the process that allow to identify a single process as organizer and coordinator of a series of tasks assigned to the whole population. The election of the Leader greatly simplifies the computation providing a centralized control. Further- more this system may even be useful to evolutionary studies that aims to explain how complex organisms evolved from unicellular systems. The work presented here describes, in particular, the design and the experimental characterization of a component of the circuit that solves the Leader Election problem. This module, composed of an hybrid promoter and a gene, is activated in the non-leader cells after receiving the signal that a leader is present in the colony. The most important element, in this case, is the hybrid promoter, it has been realized in different versions, applying the heuristic rules stated in [22], and their activity has been experimentally tested. The objective of the experimental characterization was to test the response of the genetic circuit to the introduction, in the cellular environment, of particular molecules, inducers, that can be considered inputs of the system. The desired behaviour is similar to the one of a logic AND gate in which the exit, represented by the luminous signal produced by a fluorescent protein, is one only in presence of both inducers. The robustness and the stability of this behaviour have been tested by changing the concentration of the input signals and building dose response curves. From these data it is possible to conclude that the analysed constructs have an AND-like behaviour over a wide range of inducers’ concentrations, even if it is possible to identify many differences in the expression profiles of the different constructs. This variability accounts for the fact that the input and the output signals are continuous, and so their binary representation isn’t able to capture the complexity of the behaviour. The module of the circuit that has been considered in this analysis has a fundamental role in the realization of the intercellular communication system that is necessary for the cooperative behaviour to take place. For this reason, the second phase of the characterization has been focused on the analysis of the signal transmission. In particular, the interaction between this element and the one that is responsible for emitting the chemical signal has been tested. The desired behaviour is still similar to a logic AND, since, even in this case, the exit signal is determined by the hybrid promoter activity. The experimental results have demonstrated that the systems behave correctly, even if there is still a substantial variability between them. The dose response curves highlighted that stricter constrains on the inducers concentrations need to be imposed in order to obtain a clear separation between the two levels of expression. In the conclusive chapter the DNA sequences of the hybrid promoters are analysed, trying to identify the regulatory elements that are most important for the determination of the gene expression. Given the available data it wasn’t possible to draw definitive conclusions. In the end, few considerations on promoter engineering and complex circuits realization are presented. This section aims to briefly recall some of the problems outlined in the introduction and provide a few possible solutions.
Resumo:
The main objective of this work was to investigate the impact of different hybridization concepts and levels of hybridization on fuel economy of a standard road vehicle where both conventional and non-conventional hybrid architectures are treated exactly in the same way from the point of view of overall energy flow optimization. Hybrid component models were developed and presented in detail as well as the simulations results mainly for NEDC cycle. The analysis was performed on four different parallel hybrid powertrain concepts: Hybrid Electric Vehicle (HEV), High Speed Flywheel Hybrid Vehicle (HSF-HV), Hydraulic Hybrid Vehicle (HHV) and Pneumatic Hybrid Vehicle (PHV). In order to perform equitable analysis of different hybrid systems, comparison was performed also on the basis of the same usable system energy storage capacity (i.e. 625kJ for HEV, HSF and the HHV) but in the case of pneumatic hybrid systems maximal storage capacity was limited by the size of the systems in order to comply with the packaging requirements of the vehicle. The simulations were performed within the IAV Gmbh - VeLoDyn software simulator based on Matlab / Simulink software package. Advanced cycle independent control strategy (ECMS) was implemented into the hybrid supervisory control unit in order to solve power management problem for all hybrid powertrain solutions. In order to maintain State of Charge within desired boundaries during different cycles and to facilitate easy implementation and recalibration of the control strategy for very different hybrid systems, Charge Sustaining Algorithm was added into the ECMS framework. Also, a Variable Shift Pattern VSP-ECMS algorithm was proposed as an extension of ECMS capabilities so as to include gear selection into the determination of minimal (energy) cost function of the hybrid system. Further, cycle-based energetic analysis was performed in all the simulated cases, and the results have been reported in the corresponding chapters.
Resumo:
The central aim of this thesis work is the application and further development of a hybrid quantum mechanical/molecular mechanics (QM/MM) based approach to compute spectroscopic properties of molecules in complex chemical environments from electronic structure theory. In the framework of this thesis, an existing density functional theory implementation of the QM/MM approach is first used to calculate the nuclear magnetic resonance (NMR) solvent shifts of an adenine molecule in aqueous solution. The findings show that the aqueous solvation with its strongly fluctuating hydrogen bond network leads to specific changes in the NMR resonance lines. Besides the absolute values, also the ordering of the NMR lines changes under the influence of the solvating water molecules. Without the QM/MM scheme, a quantum chemical calculation could have led to an incorrect assignment of these lines. The second part of this thesis describes a methodological improvement of the QM/MM method that is designed for cases in which a covalent chemical bond crosses the QM/MM boundary. The development consists in an automatized protocol to optimize a so-called capping potential that saturates the electronic subsystem in the QM region. The optimization scheme is capable of tuning the parameters in such a way that the deviations of the electronic orbitals between the regular and the truncated (and "capped") molecule are minimized. This in turn results in a considerable improvement of the structural and spectroscopic parameters when computed with the new optimized capping potential within the QM/MM technique. This optimization scheme is applied and benchmarked on the example of truncated carbon-carbon bonds in a set of small test molecules. It turns out that the optimized capping potentials yield an excellent agreement of NMR chemical shifts and protonation energies with respect to the corresponding full molecules. These results are very promising, so that the application to larger biological complexes will significantly improve the reliability of the prediction of the related spectroscopic properties.