938 resultados para gilalite, infrared spectroscopy, Raman spectroscopy, silicate


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The research and development of nanostructured materials have been growing significantly in the last years. These materials have properties that were significantly modified as compared to conventional materials due to the extremely small dimensions of the crystallites. The tantalum carbide (TaC) is an extremely hard material that has high hardness, high melting point, high chemical stability, good resistance to chemical attack and thermal shock and excellent resistance to oxidation and corrosion. The Compounds of Tantalum impregnated with copper also have excellent dielectric and magnetic properties. Therefore, this study aimed to obtain TaC and mixed tantalum oxide and nanostructured copper from the precursor of tris (oxalate) hydrate ammonium oxitantalato, through gas-solid reaction and solid-solid respectively at low temperature (1000 ° C) and short reaction time. The materials obtained were characterized by X-ray diffraction (XRD), Rietveld refinement, Scanning Electron Microscopy (SEM), Spectroscopy X-Ray Fluorescence (XRF), infrared spectroscopy (IR), thermogravimetric (TG), thermal analysis (DTA) and BET. Through the XRD analyses and the Reitiveld refinement of the TaC with S = 1.1584, we observed the formation of pure tantalum carbide and cubic structure with average crystallite size on the order of 12.5 nanometers. From the synthesis made of mixed oxide of tantalum and copper were formed two distinct phases: CuTa10O26 and Ta2O5, although the latter has been formed in lesser amounts

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The refractory metal carbides have proven important in the development of engineering materials due to their properties such as high hardness, high melting point, high thermal conductivity and high chemical stability. The niobium carbide presents these characteristics. The compounds of niobium impregnated with copper also have excellent dielectric and magnetic properties, and furthermore, the Cu doping increases the catalytic activity in the oxidation processes of hydrogen. This study aimed to the synthesis of nanostructured materials CuNbC and niobium and copper oxide from precursor tris(oxalate) oxiniobate ammonium hydrate through gas-solid and solid-solid reaction, respectively. Both reactions were carried out at low temperature (1000°C) and short reaction time (2 hours). The niobium carbide was produced with 5 % and 11% of copper, and the niobium oxide with 5% of copper. The materials were characterized by X-Ray Diffraction (XRD), Rietveld refinement, Scanning Electron Microscopy (SEM), X-Ray Fluorescence Spectroscopy (XRF), infrared spectroscopy (IR), thermogravimetric (TG) and differential thermal analysis (DTA , BET and particle size Laser. From the XRD analysis and Rietveld refinement of CuNbC with S = 1.23, we observed the formation of niobium carbide and metallic copper with cubic structure. For the synthesis of mixed oxide made of niobium and copper, the formation of two distinct phases was observed: CuNb2O6 and Nb2O5, although the latter was present in small amounts

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The environmental impact caused by the disposal of non-biodegradable polymer packaging on the environment, as well as the high price and scarcity of oil, caused increase of searches in the area of biodegradable polymers from renewable resources were developed. The poly (lactic acid) (PLA) is a promising polymer in the market, with a large availability of raw material for the production of its monomer, as well as good processability. The aimed of this study was synthesis PLA by direct polycondesation of lactic acid, using the tool of experimental design (DOE) (central composite rotatable design (CCRD)) to optimize the conditions of synthesis. The polymer obtained was characterized by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), viscosimetric analysis, differential scanning calorimeter (DSC) and size exclusion chromatography (SEC). The results confirmed the formation of a poly (lactic acid) semicrystalline in the syntheses performed. Through the central composite rotatable design was possible to optimize the crystallization temperature (Tc) and crystallinity degree (Xc). The crystallization temperature maximum was found for percentage of catalyst around the central point (0,3 (%W)) and values of time ranging from the central point (6h) to the upper level (+1) (8h). The crystallization temperature maximum was found for the total synthesis time of 4h (-1) and percentage of catalyst 0,1(W%) (-1). The results of size exclusion chromatography (SEC) showed higher molecular weights to 0,3 (W%) percent of catalyst and total time synthesis of 3,2h

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ionic oxides with ABO3 structure, where A represents a rare earth element or an alkaline metal and B is a transition metal from group VIII of the periodic table are potential catalysts for oxidation and good candidates for steam reforming reaction. Different methods have been considered for the synthesis of the oxide materials with perovskite structure to produce a high homogeneous material with low amount of impurities and low calcination temperatures. In the current work, oxides with the LaNiO3 formula had been synthesized using the method of the polymeric precursors. The thermal treatment of the materials took place at 300 ºC for 2h. The material supported in alumina and/or zirconia was calcined at 800 ºC temperature for 4h. The samples had been characterized by the following techniques: thermogravimetry; infrared spectroscopy; X-ray diffraction; specific surface area; distribution of particle size; scanning electron microscopy and thermo-programmed reduction. The steam reforming reaction was carried out in a pilot plant using reducing atmosphere in the reactor with a mixture of 10% H2-Argon, a mass about 5g of catalyst, flowing at 50 mL.min-1. The temperature range used was 50 - 1000 oC with a heating rate of 10 oC.min-1. A thermal conductivity detector was used to analyze the gas after the water trapping, in order to permit to quantify the consumption of hydrogen for the lanthanum nickelates (LaNiO3). The results showed that lanthanum nickelate were more efficient when supported in alumina than when supported in zirconia. It was observed that the methane conversion was approximately 100% and the selectivity to hydrogen was about 70%. In all cases were verified low selectivity to CO and CO2

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Biodiesel is an alternative fuel, renewable, biodegradable and nontoxic. The transesterification of vegetable oils or animal fat with alcohol is most common form of production of this fuel. The procedure for production of biodiesel occurs most commonly through the transesterification reaction in which catalysts are used to accelerate and increase their income and may be basic, acid or enzyme. The use of homogeneous catalysis requires specific conditions and purification steps of the reaction products (alkyl ester and glycerol) and removal of the catalyst at the end of the reaction. As an alternative to improve the yield of the transesterification reaction, minimize the cost of production is that many studies are being conducted with the application of heterogeneous catalysis. The use of nano-structured materials as catalysts in the production of biodiesel is a biofuel alternative for a similar to mineral diesel. Although slower, can esterify transesterified triglycerides and free fatty acids and suffer little influence of water, which may be present in the raw material. This study aimed at the synthesis, characterization and application of nano-structured materials as catalysts in the transesterification reaction of soybean oil to produce biodiesel by ethylic route. The type material containing SBA-15 mesoporous lanthanum embedded within rightly Si / La = 50 was used catalyst. Solid samples were characterized by X-ray diffraction, thermogravimetric analysis, infrared spectroscopy, nitrogen adsorption and desorption. For the transesterification process, we used a molar ratio of 20:1 alcohol and oil with 0.250 g of catalyst at 60°C and times of 6 hours of reaction. It was determined the content of ethyl esters by H-NMR analysis and gas chromatography. It was found that the variable of conversion obtained was 80%, showing a good catalytic activity LaSBA-15 in the transesterification of vegetable oils via ethylic route

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This master thesis aims at developing a new methodology for thermochemical degradation of dry coconut fiber (dp = 0.25mm) using laboratory rotating cylinder reactor with the goal of producing bio-oil. The biomass was characterized by infrared spectroscopy with Fourier transform FTIR, thermogravimetric analysis TG, with evaluation of activation energy the in non-isothermal regime with heating rates of 5 and 10 °C/min, differential themogravimetric analysis DTG, sweeping electron microscopy SEM, higher heating value - HHV, immediate analysis such as evaluated all the amounts of its main constituents, i.e., lignin, cellulose and hemicelluloses. In the process, it was evaluated: reaction temperature (450, 500 and 550oC), carrier gas flow rate (50 and 100 cm³/min) and spin speed (20 and 25 Hz) to condensate the bio-oil. The feed rate of biomass (540 g/h), the rotation of the rotating cylinder (33.7 rpm) and reaction time (30 33 min) were constant. The phases obtained from the process of pyrolysis of dry coconut fiber were bio-oil, char and the gas phase non-condensed. A macroscopic mass balance was applied based on the weight of each phase to evaluate their yield. The highest yield of 20% was obtained from the following conditions: temperature of 500oC, inert gas flow of 100 cm³/min and spin speed of 20 Hz. In that condition, the yield in char was 24.3%, non-condensable gas phase was 37.6% and losses of approximately 22.6%. The following physicochemical properties: density, viscosity, pH, higher heating value, char content, FTIR and CHN analysis were evaluated. The sample obtained in the best operational condition was subjected to a qualitative chromatographic analysis aiming to know the constituents of the produced bio-oil, which were: phenol followed by sirigol, acetovanilona and vinyl guaiacol. The solid phase (char) was characterized through an immediate analysis (evaluation of moisture, volatiles, ashes and fixed carbon), higher heating value and FTIR. The non-condensing gas phase presented as main constituents CO2, CO and H2. The results were compared to the ones mentioned by the literature.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The production of synthesis gas has received renewed attention due to demand for renewable energies to reduce the emissions of gases responsible for enhanced greenhouse effect. This work was carried out in order to synthesize, characterize and evaluate the implementation of nickel catalysts on MCM-41 in dry reforming reactions of methane. The mesoporous molecular sieves were synthesized using as silica sources the tetraethyl orthosilicate (TEOS) and residual glass powder (PV). The sieves were impregnated with 10% nickel to obtain the metallic catalysts (Ni/MCM-41). These materials were calcined and characterized by Thermogravimetric Analysis (TG), Infrared spectroscopy (FTIR), X-ray Diffraction (XRD), Temperature-Programmed Reduction (TPR) and N2 Adsorption/Desorption isotherms (BET/BJH). The catalytic properties of the samples were evaluated in methane dry reforming with CO2 in order to produce synthesis gas to be used in the petrochemical industry. The materials characterized showed hexagonal structure characteristic of mesoporous material MCM-41 type, being maintained after impregnation with nickel. The samples presented variations in the specific surface area, average volume and diameter of pores based on the type of interaction between the nickel and the mesoporous support. The result of the the catalytic tests showed conversions about 91% CO2, 86% CH4, yelds about 85% CO and 81% H2 to Ni/MCM-41_TEOS_C, and conversions about 87% CO2, 82% CH4, yelds about 70% CO and 59% H2 to Ni/MCM-41_PV_C. The similar performance confirms that the TEOS can be replaced by a less noble materials

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ionic liquids (ILs) are organic compounds liquid at room temperature, good electrical conductors, with the potential to form as a means for electrolyte on electrolysis of water, in which the electrodes would not be subjected to such extreme conditions demanding chemistry [1]. This paper describes the synthesis, characterization and study of the feasibility of ionic liquid ionic liquid 1-methyl-3(2,6-(S)-dimethyloct-2-ene)-imidazole tetrafluoroborate (MDI-BF4) as electrolyte to produce hydrogen through electrolysis of water. The MDI-BF4 synthesized was characterized by thermal methods of analysis (Thermogravimetric Analysis - TG and Differential Scanning Calorimetry - DSC), mid-infrared spectroscopy with Fourier transform by method of attenuated total reflectance (FTIR-ATR), nuclear magnetic resonance spectroscopy of hydrogen (NMR 1H) and cyclic voltammetry (CV). Where thermal methods were used to calculate the yield of the synthesis of MDI-BF4 which was 88.84%, characterized infrared spectroscopy functional groups of the compound and the binding B-F 1053 cm-1; the NMR 1H analyzed and compared with literature data defines the structure of MDI-BF4 and the current density achieved by MDI-BF4 in the voltammogram shows that the LI can conduct electrical current indicating that the MDI-BF4 is a good electrolyte, and that their behavior does not change with the increasing concentration of water

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The fast pyrolysis of lignocellulosic biomass is a thermochemical conversion process for production energy which have been very atratactive due to energetic use of its products: gas (CO, CO2, H2, CH4, etc.), liquid (bio-oil) and charcoal. The bio-oil is the main product of fast pyrolysis, and its final composition and characteristics is intrinsically related to quality of biomass (ash disposal, moisture, content of cellulose, hemicellulose and lignin) and efficiency removal of oxygen compounds that cause undesirable features such as increased viscosity, instability, corrosiveness and low calorific value. The oxygenates are originated in the conventional process of biomass pyrolysis, where the use of solid catalysts allows minimization of these products by improving the bio-oil quality. The present study aims to evaluate the products of catalytic pyrolysis of elephant grass (Pennisetum purpureum Schum) using solid catalysts as tungsten oxides, supported or not in mesoporous materials like MCM-41, derived silica from rice husk ash, aimed to reduce oxygenates produced in pyrolysis. The biomasss treatment by washing with heated water (CEL) or washing with acid solution (CELix) and application of tungsten catalysts on vapors from the pyrolysis process was designed to improve the pyrolysis products quality. Conventional and catalytic pyrolysis of biomass was performed in a micro-pyrolyzer, Py-5200, coupled to GC/MS. The synthesized catalysts were characterized by X ray diffraction, infrared spectroscopy, X ray fluorescence, temperature programmed reduction and thermogravimetric analysis. Kinetic studies applying the Flynn and Wall model were performed in order to evaluate the apparent activation energy of holoceluloce thermal decomposition on samples elephant grass (CE, CEL and CELix). The results show the effectiveness of the treatment process, reducing the ash content, and were also observed decrease in the apparent activation energy of these samples. The catalytic pyrolysis process converted most of the oxygenate componds in aromatics such as benzene, toluene, ethylbenzene, etc

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this work was to perform the extraction and characterization of xylan from corn cobs and prepare xylan-based microcapsules. For that purpose, an alkaline extraction of xylan was carried out followed by the polymer characterization regarding its technological properties, such as angle of repose, Hausner factor, density, compressibility and compactability. Also, a low-cost and rapid analytical procedure to identify xylan by means of infrared spectroscopy was studied. Xylan was characterized as a yellowish fine powder with low density and poor flow properties. After the extraction and characterization of the polymer, xylan-based microcapsules were prepared by means of interfacial crosslinking polymerization and their characterization was performed in order to obtain gastroresistant multiparticulate systems. This work involved the most suitable parameters of the preparation of microcapsules as well as the study of the process, scale-up methodology and biological analysis. Magnetic nanoparticles were used as a model system to be encapsulated by the xylan microcapsules. According to the results, xylan-based microcapsules were shown to be resistant to several conditions found along the gastrointestinal tract and they were able to avoid the early degradation of the magnetic nanoparticles

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Colon-specific drug delivery systems have attracted increasing attention from the pharmaceutical industry due to their ability of treating intestinal bowel diseases (IBD), which represent a public health problem in several countries. In spite of being considered a quite effective molecule for the treatment of IBD, mesalazine (5-ASA) is rapidly absorbed in the upper gastrointestinal tract and its systemic absorption leads to risks of adverse effects. The aim of this work was to develop a microparticulate system based on xylan and Eudragit® S- 100 (ES100) for colon-specific delivery of 5-ASA and evaluate the interaction between the polymers present in the systems. Additionaly, the physicochemical and rheological properties of xylan were also evaluated. Initially, xylan was extracted from corn cobs and characterized regarding the yield and rheological properties. Afterwards, 10 formulations were prepared in different xylan and ES100 weight ratios by spray-drying the polymer solutions in 0.6N NaOH and phosphate buffer pH 7.4. In addition, 3 formulations consisting of xylan microcapsules were produced by interfacial cross-linking polymerization and coated by ES100 by means of spray-drying in different polymer weight ratios of xylan and ES100. The microparticles were characterized regarding yield, morphology, homogeneity, visual aspect, crystallinity and thermal behavior. The polymer interaction was investigated by infrared spectroscopy. The extracted xylan was presented as a very fine and yellowish powder, with mean particle size smaller than 40μm. Regarding the rheological properties of xylan, they demonstrated that this polymer has a poor flow, low density and high cohesiveness. The microparticles obtained were shown to be spherical and aggregates could not be observed. They were found to present amorphous structure and have a very high thermal stability. The yield varied according to the polymer ratios. Moreover, it was confirmed that the interaction between xylan and ES100 occurs only by means of physical aggregation

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Clays are natural materials that have great potential for use as excipients for solid dosage forms. Palygorskite is a type of clay that has hydrophilic properties as well as a large surface area, which could contribute to the dissolution of drugs. Thus, the present study aims to evaluate the use of palygorskite clay, from Piaui (Northeast region of Brazil), as a pharmaceutical excipient for solid dosage forms, using rifampicin and isoniazid as the model drugs. The former is a poorly soluble drug often associated with isoniazid for tuberculosis treatment. Palygorskite was characterized by X-ray diffraction (XRD), X-ray fluorescence (XRF), particle size, transmission electron microscopy (TEM), scanning electron microscopy (SEM) and specific surface area (BET). The rheological and technological properties of palygorskite were determined and compared to those of talc, magnesium stearate and Aersosil 200. Mixtures between drugs and palygorskite were analyzed by differential scanning calorimetry (DSC), thermogravimetric analysis (TG) combined with thermal analysis (DTA) and Fourier Transform Infrared Spectroscopy (FT-IR), where the results were compared with those of the individual compounds. In addition, dissolution studies of solid dispersions and capsules containing the drugs, mixed with either palygorskite or a mixture of talc and magnesium stearate, were performed. The results showed that palygorskite has small particles with a high surface area. Its rheological characteristics were better than those of others commonly used glidants and lubricants. There was no interaction between palygorskite and the drugs (rifampicin and isoniazid). Among the dispersions studied, the mixture with palygorskite (5%) showed the highest drug dissolution when compared to other excipients. The dissolution of the rifampicin capsules containing palygosrkite was faster in higher concentrations. However, these differences were statistically different only in the first minutes of the dissolution experiment. The dissolution profile of isoniazid was also statistically different on the initial part of the experiment. The formulations prepared with isoniazid and palygorskite showed higher drug dissolution, but it was in descending order of concentration. According to these results, the palygorskite clay used in this study has great potential for application as an excipient for solid dosage forms

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis aimed to assess the increase in solubility of simvastatin (SINV) with solid dispersions using techniques such as kneading (MA), co-solvent evaporation (ES), melting carrier (FC) and spray dryer (SD). Soluplus (SOL), PEG 6000 (PEG), PVP K-30 (PVP) e sodium lauryl sulphate (LSS) were used as carriers. The solid dispersions containing PEG [PEG-2(SD)], Soluplus [SOL-2(MA)] and sodium lauryl sulphate [LSS-2(ES)] were presented with a greater increase in solubility (5.02, 5.60 and 5.43 times respectively); analyses by ANOVA between the three groups did not present significant difference (p<0.05). In the phase solubility study, the calculation of the Gibbs free energy (ΔG) revealed that the spontaneity of solubilisation of SINV occurred in the order SOL>PEG >PVP 75%>LSS, always 80%. The phase diagrams of PEG and LSS presented solubilization stoichiometry of type 1:1 (type AL). The diagrams with PVP and SOL tend to 1:2 stoichiometry (type AL + AP). The stability coefficients (Ks) of the phase diagrams revealed that the most stable reactions occurred with LSS and PVP. The solid dispersions were characterized by Fourier transform infrared (FTIR), differential scanning calorimetry (DSC), scanning electron microscopy (SEM), particle size distribution (PSD), near-infrared spectroscopy imaging (NIR-CI) and X-ray diffraction of the powder using the Topas software (PDRX-TOPAS). The solid dispersion PEG-2(SD) presented the greatest homogeneity and the lowest degree of crystallinity (18.2%). The accelerated stability study revealed that the solid dispersions are less stable than SINV, with PEG-2(SD) being the least stable, confirmed by FTIR and DSC. The analyses by PDRX-TOPAS revealed the amorphous character of the dispersions and the mechanism of increasing solubility

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Xylella fastidiosa is the causal agent of citrus variegated chlorosis and Pierce's disease which are the major threat to the citrus and wine industries. The most accepted hypothesis for Xf diseases affirms that it is a vascular occlusion caused by bacterial biofilm, embedded in an extracellular translucent matrix that was deduced to be the exopolysaccharide fastidian. Fourier transform infrared spectroscopy analysis demonstrated that virulent cells which form biofilm on glass have low fastidian content similar to the weak virulent ones. This indicates that high amounts of fastidian are not necessary for adhesion. In this paper we propose a kinetic model for X fastidiosa adhesion, biofilm formation, and virulence based on electrostatic attraction between bacterial surface proteins and xylem walls. Fastidian is involved in final biofilm formation and cation sequestration in dilute sap. (C) 2004 Federation of European Microbiological Societies. Published by Elsevier B.V. All rights reserved.