940 resultados para generative and performative modeling


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Coupled Electromechanical Analysis, MEMS Modeling, MEMS, RF MEMS Switches, Defected Ground Structures, Reconfigurable Resonator

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This work focuses on the modeling and numerical approximations of population balance equations (PBEs) for the simulation of different phenomena occurring in process engineering. The population balance equation (PBE) is considered to be a statement of continuity. It tracks the change in particle size distribution as particles are born, die, grow or leave a given control volume. In the population balance models the one independent variable represents the time, the other(s) are property coordinate(s), e.g., the particle volume (size) in the present case. They typically describe the temporal evolution of the number density functions and have been used to model various processes such as granulation, crystallization, polymerization, emulsion and cell dynamics. The semi-discrete high resolution schemes are proposed for solving PBEs modeling one and two-dimensional batch crystallization models. The schemes are discrete in property coordinates but continuous in time. The resulting ordinary differential equations can be solved by any standard ODE solver. To improve the numerical accuracy of the schemes a moving mesh technique is introduced in both one and two-dimensional cases ...

Relevância:

40.00% 40.00%

Publicador:

Resumo:

PEEC, computational electromagnetics

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Magdeburg, Univ., Fak. für Elektrotechnik und Informationstechnik, Diss., 2010

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Magdeburg, Univ., Fak. für Informatik, Diss., 2012

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Magdeburg, Univ., Fak. für Verfahrens- und Systemtechnik, Diss., 2012

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Magdeburg, Univ., Fak. für Naturwiss., Diss., 2013

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Magdeburg, Univ., Fak. für Maschinenbau, Diss., 2013

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Magdeburg, Univ., Fak. für Maschinenbau, Diss., 2014

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Otto-von-Guericke-Universität Magdeburg, Fakultät für Verfahrens- und Systemtechnik, Univ., Dissertation, 2015

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This work describes the ab initio procedure employed to build an activation model for the alpha 1b-adrenergic receptor (alpha 1b-AR). The first version of the model was progressively modified and complicated by means of a many-step iterative procedure characterized by the employment of experimental validations of the model in each upgrading step. A combined simulated (molecular dynamics) and experimental mutagenesis approach was used to determine the structural and dynamic features characterizing the inactive and active states of alpha 1b-AR. The latest version of the model has been successfully challenged with respect to its ability to interpret and predict the functional properties of a large number of mutants. The iterative approach employed to describe alpha 1b-AR activation in terms of molecular structure and dynamics allows further complications of the model to allow prediction and interpretation of an ever-increasing number of experimental data.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The transition from wakefulness to sleep represents the most conspicuous change in behavior and the level of consciousness occurring in the healthy brain. It is accompanied by similarly conspicuous changes in neural dynamics, traditionally exemplified by the change from "desynchronized" electroencephalogram activity in wake to globally synchronized slow wave activity of early sleep. However, unit and local field recordings indicate that the transition is more gradual than it might appear: On one hand, local slow waves already appear during wake; on the other hand, slow sleep waves are only rarely global. Studies with functional magnetic resonance imaging also reveal changes in resting-state functional connectivity (FC) between wake and slow wave sleep. However, it remains unclear how resting-state networks may change during this transition period. Here, we employ large-scale modeling of the human cortico-cortical anatomical connectivity to evaluate changes in resting-state FC when the model "falls asleep" due to the progressive decrease in arousal-promoting neuromodulation. When cholinergic neuromodulation is parametrically decreased, local slow waves appear, while the overall organization of resting-state networks does not change. Furthermore, we show that these local slow waves are structured macroscopically in networks that resemble the resting-state networks. In contrast, when the neuromodulator decrease further to very low levels, slow waves become global and resting-state networks merge into a single undifferentiated, broadly synchronized network.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The breakdown of the Bretton Woods system and the adoption of generalized oating exchange rates ushered in a new era of exchange rate volatility and uncer- tainty. This increased volatility lead economists to search for economic models able to describe observed exchange rate behavior. In the present paper we propose more general STAR transition functions which encompass both threshold nonlinearity and asymmetric e¤ects. Our framework allows for a gradual adjustment from one regime to another, and considers threshold e¤ects by encompassing other existing models, such as TAR models. We apply our methodology to three di¤erent exchange rate data-sets, one for developing countries, and o¢ cial nominal exchange rates, the sec- ond emerging market economies using black market exchange rates and the third for OECD economies.