816 resultados para farmland ponds
Lake LaVerne Watershed Project Progress Report: Project Number 1415-007, Final Report, June 30, 2016
Resumo:
This application targets a critical need for low maintenance and inexpensive treatment solutions to encourage landowners and resource managers to enhance the water quality of small ponds and lakes. Many rural and urban small ponds and lakes across Iowa and the region have eutrophic conditions with high levels of nutrients and low levels of oxygen. Story SWCD teamed with Iowa State University (ISU) researchers propose to address this need through the construction and monitoring of a vegetated floating island (VFI) system on ISU's iconic Lake LaVerne. VFI's are hydroponically-vegetated islands that reduce nutrient loading directly from pond and lake water (rather than from soil adjacent to the pond). Urban watershed assessment on the ISU campus has already led to reductions in stormwater runoff to the lake but eutrophic conditions persist and are well documented. The VFI will function as a public art attraction for the entire 2015 growing season during which time monitoring will occur to quantify nitrogen, phosphorus and carbon changes in the lake. Tens of thousands of visitors to the ISU campus and Lake LaVerne will interact with this installation using promotional signage on site, public events and interactive social media throughout the project. Water quality and vegetation analysis will quantify nutrient uptake by the island vegetation and thus determine its effectiveness for use in other similar water bodies in Iowa.
Resumo:
The protozoan parasite Marteilia refringens has been partly responsible for the severe decrease in the production of the European flat oyster Ostrea edulis Linnaeus in France since the 1970s. The calanoid copepod Paracartia grani Sars was recently found to be a host for M refringens in French shallow-water oyster ponds ('claires'). This study reconsidered M refringens transmission dynamics in the light of this finding, taking into account not only oyster infection dynamics and environmental factors but also data concerning the copepod host. P. grani population dynamics in the claire under study revealed that this species is the dominant planktonic copepod in this confined ecosystem. During winter, M refringens overwintered in O. edulis, with P. grani existing only as resting eggs in the sediment. The increase in temperature in spring controlled and synchronized both the release of M refringens sporangia in the oyster feces, and the hatching of the benthic resting eggs of the copepod. Infection of oysters by M refringens was limited to June, July and August, coinciding with (1) the highest temperature recorded in the claire, and (2) the highest abundance of P. grani. PCR detection of M refringens in P. grani during the summer period was linked to the release of parasite sporangia by the oyster. Our results are supported by previous results on the effective transmission of this parasite from the oyster to the copepod.
Resumo:
The ecophysiological effects of stress in female Persian sturgeon, Acipenser persicus brood fishes during catch, transport and their confinement in the Kurenski ponds at the Shahid Dr. Beheshti Fish Propagation and Rearing Center were studied. The brood fishes under study were caught at three catch stations located at the Sefidrud River, Sefidrud River estuary and Gorganrud River estuary and were held in ponds at the Shahid Marjani Fish Propagation and Rearing Center.
Resumo:
Fish are an important part of Bangladeshi culture and diet. Bangladesh ranks among the top five freshwater fish producers in the world. Fish are abundant in the thousands of rivers, ponds, lakes and seasonal floodplains across the country. They are a major source of protein for people living near these water bodies. In Bangladesh, many households depend on fish farming for their livelihood. By growing fish in homestead ponds, households have a consistent supply of nutritious fish and can sell the surplus for an income. The USAID-funded Cereal Systems Initiative for South Asia in Bangladesh (CSISA-BD) aimed to increase the income of farming households through increased productivity of aquaculture systems. Key activities of the project included developing and disseminating appropriate improved agricultural technology and quality fish seeds to improve livelihoods, food security and nutrition.
Resumo:
Carp (Cyprinus Carpio L.) were first recommend for Uganda in 1941 by Dr. Hornell who was Oolonial Fisheries Adviser at that time. He stated that they would be suitable for Lake Bunyoni (6,474 ft.) in Kigezi District where the cold made conditions marginal for Tilapia and yet where the water was too warm for trout. Later, in 1947, when fish farming was proposed for Uganda, an expert from Israel whose visit was arranged by Dr. Hickling, the then current Colonial Fisheries Adviser, recommended that carp should be used as the stock fish in the ponds rather than Tilapia which Dr. Hickling himself had suggested.
Resumo:
Invasive species pose a major threat to aquatic ecosystems. Their impact can be particularly severe in tropical regions, like those in northern Australia, where >20 invasive fish species are recorded. In temperate regions, environmental DNA (eDNA) technology is gaining momentum as a tool to detect aquatic pests, but the technology's effectiveness has not been fully explored in tropical systems with their unique climatic challenges (i.e. high turbidity, temperatures and ultraviolet light). In this study, we modified conventional eDNA protocols for use in tropical environments using the invasive fish, Mozambique tilapia (Oreochromis mossambicus) as a detection model. We evaluated the effects of high water temperatures and fish density on the detection of tilapia eDNA, using filters with larger pores to facilitate filtration. Large-pore filters (20 μm) were effective in filtering turbid waters and retaining sufficient eDNA, whilst achieving filtration times of 2-3 min per 2-L sample. High water temperatures, often experienced in the tropics (23, 29, 35 °C), did not affect eDNA degradation rates, although high temperatures (35 °C) did significantly increase fish eDNA shedding rates. We established a minimum detection limit for tilapia (1 fish/0.4 megalitres/after 4 days) and found that low water flow (3.17 L/s) into ponds with high fish density (>16 fish/0.4 megalitres) did not affect eDNA detection. These results demonstrate that eDNA technology can be effectively used in tropical ecosystems to detect invasive fish species. © 2016 John Wiley & Sons Ltd.
Resumo:
The amounts of farm dairy effluent stored in ponds and irrigated to land have steadily increased with the steady growth of New Zealand's dairy industry. About 80% of dairy farms now operate with effluent storage ponds allowing deferred irrigation. These storage and irrigation practices cause emissions of greenhouse gases (GHG) and ammonia. The current knowledge of the processes causing these emissions and the amounts emitted is reviewed here. Methane emissions from ponds are the largest contributor to the total GHG emissions from effluent in managed manure systems in New Zealand. Nitrous oxide emissions from anaerobic ponds are negligible, while ammonia emissions vary widely between different studies, probably because they depend strongly on pH and manure composition. The second-largest contribution to GHG emissions from farm dairy effluent comes from nitrous oxide emissions from land application. Ammonia emissions from land application of effluent in New Zealand were found to be less than those reported elsewhere from the application of slurries. Recent studies have suggested that New Zealand's current GHG inventory method to estimate methane emissions from effluent ponds should be revised. The increasing importance of emissions from ponds, while being a challenge for the inventory, also provides an opportunity to achieve mitigation of emissions due to the confined location of where these emissions occur. © 2015 © 2015 The Royal Society of New Zealand.
Resumo:
Fish introductions have been made from small fish ponds to the largest lakes in Africa. The primary intent of these introductions has been to sustain or increase fish production, although some introductions have been made to develop sport fisheries and to control unwanted organisms. Some of these introductions have fulfilled their objective in the short term, but several of these "successful" introductions have created uncertainties about their long term sustainability. Lates niloticus, Oreochromis niloticus, O. leucostictus, Tilapia melanopleura and T. zilli were introduced into lakes Victoria and Kyoga in 1950s and early 1960s. By the 1980s O. niloticus and O. niloticus dominated the fisheries of these lakes, virtually eliminating a number of endemic fish species. The loss of genetic diversity of the fish in the worlds second largest lake has also been accompanied by a loss of trophic diversity. The transformation of the fish community has, in Lake Victoria coincided with a profound eutrophication (algal blooms, fish kills, hypolimnetic anoxia) which might be related to alterations of the lake's food-web structure. In contrast, the introduction of a planktivore, Limnothrissa miodon into Lake Kivu and the Kariba reservoir has established highly successful fisheries with little documented effect on the pre-existing fish community or trophic ecology of the lakes. The highly endemised species-rich African Great lakes may be particularly sensitive to species introductions and require special consideration and caution when introductions are contemplated because species extinctions, introgressive hybridization and ecosystem alterations may occur following fish introductions.
Resumo:
Uganda is rich in aquatic resources. Up to 17 % of the country's surface area is covered by Aquatic systems comprising five major lakes; Victoria, Albert, Kyoga, Edward, George, about 160 minor lakes, an extensive river and stream system, dams and ponds. These aquatic systems are associated with extensive swamps
Resumo:
This work aimed to study the structure and dynamic of Phytoplankton and Bacterioplankton in a complete cycle of shrimp cultivation (Litopenaeus vannamei) and determine the environmental factors responsible for the structural changes of these communities. The study was realized in a saltwater shrimp farm (Macaíba, RN), between September/2005 and February/2006, and in a freshwater shrimp farm (Ceará Mirim, RN), between May/2007 and September 2007. The samplings were collected weekly in saltwater farm and every fifteen days in freshwater farm. Total phosphorus, chlorophyll a and environmental parameters (pH, dissolved oxygen, salinity, temperature, depth and water transparency) were measured. Qualitative and quantitative analysis of the phytoplankton and bacterioplankton were carried out. The Shannon-Wiener ecologic indexes of diversity and the Pielou equitability indexes were calculated to the phytoplankton. Bacterial density was determined by epifluorescence microscopy. The data were statistically analyzed by Pearson correlation and t-Test. Chlorophycea were predominat in salt water and in the captation/drainage point (24 to 99%). Diatoms had higher wealth. The species Choricystis minor had the highest occurrence (100%) and dominance (90-100%), thus showing its adaptation to the high temperatures, salinity and low water transparency conditions. Filamentous Cyanobacteria like Oscillatoria sp., Pseudoanabaena sp. and Phormidium sp. had constant levels. The negative correlation between chlorophycea and water transparency, and the positive correlation between chlorophyll a and salinity, showed that the phytoplankton was well adapted to the low transparency and to the high salinity. The bacterioplankton was negatively correlated with the total phosphorus and salinity. In freshwater, Cyanobacteria were predominant (>80%), presenting some producers of toxins species like Microcystis sp., Aphanizomenon sp., Cylindrospermopsis raciborskii e Anabaena circinalis. Cyanobacterial density and total phosphorus and chlorophyll a concentrations exceeded the maximum value allowed by legislation. The means of total phosphorus varied from 264 to 627 Wg.L-1 and the means of chlorophyll a oscillated between 22 and 182 Wg.L-1. The phytoplankton species were selected by low availability of the light, high pH, temperature and high availability of total phosphorus. The bacterioplankton showed high densities (5,13 x 107 to 8,50 x107 Bac.mL-1). The studied environments (ponds and rivers) presented a high level of trophic state based on the high concentrations of chlorophyll a and total phosphorus and cyanobacteria dominance. The composition of species in the ponds and rivers was similar, as well as high concentrations of total phosphorus and chlorophyll a, highlighting the pollution caused by the discharges of the farms in natural environment
Resumo:
Wydział Biologii
Resumo:
Marine shrimp farming has grown exponentially during the last years in Brazil. In spite of the promising economical situation, this activity is facing an increasing criticism due to its environmental impact. Thus, the necessity of alternatives to mitigate environmental degradation caused by this activity. An alternative that is being studied is the policulture that is the integrated culture of two or more organisms, normally one of them a filtering organism. Among filtering organisms, macroalgae are very practicable because they are efficient in the removal of the exceeding nutrients of the water and do not leave residues in the water. Besides, the integrated culture with macroalgae allows the economical exploration of the seaweed (for the manufacture of jelly and jam, for the dairy industry, pharmaceuticals, etc.) along with possibility of a sustainable aquaculture. In the present experiment, the development of the seaweed Gracilaria birdiae, the influence and tolerance of this species to the environmental parameters, and its absorption efficiency in relation with the three kinds of macronutrients (NH4+, NO3- and PO4-3) found in the effluents of marine shrimp farming was studied. The experiment was divided in two parts: a laboratorial part and one part carried under natural conditions. The water used in the laboratory trial was collected in the shrimp ponds of Tecnarão farm and distributed in aquaria containing 20 g of G. birdiae. In the field trial, 0.5 kg of G. birdiae was inserted in PVC cages cultivated in the farm. The results of the study showed a modest growth of G. birdiae, probably due to its low tolerance to highly eutrophicated environments. However, the removal of nutrients was very expressive. Ammonia was reduced in approximately 34 %. Ortho-phosphate showed a reduction of 93.5 %. The capacity of biofiltration of the NO3- by the macro algae was of 100 %, showing that G. birdiae is a seaweed-filtered with a high level of removal for this nutrient under laboratorial conditions. In spite of the low growth of the macro algae in the experiment, the results in relation to the removal of nutrients of the water was encouraging, suggesting that this species can be an efficient biofilter and thus, a strong candidate to be used in a sustainable aquaculture
Resumo:
The incidence of toxic cyanobacterial blooms is one of the important consequences of eutrophication in aquatic ecosystems. It is a very common phenomenon in reservoirs and shrimp ponds in the State of Rio Grande do Norte (RN), Brazil. Cyanobacterias produce toxins which can affect aquatic organisms and men trough the food chain. Aiming to contribute to the studies of cyanobacterias in RN, we propose: a) to evaluate the toxicity of isolated cyanobacterias in important fresh-water environments; and b) to verify the effects of both natural and cultured blooms occurred in reservoirs for human supply and in the cladoceran Ceriodaphnia silvestrii. This study was carried out using samples of natural blooms occurred between March and October of 2004 in Gargalheiras Dam (08º L e 39º W), in July of 2004 in Armando Ribeiro Gonçalves Dam (06o S e 37o W) and in commercial shrimp ponds (Litopenaeus vannamei) located in fresh-water environments. The samples were collected with plankton net (20µm.) for identification, isolation and obtaining of phytoplanktonic biomass for liophilization and later toxicity bioassays. The toxicity of cultured samples and natural blooms was investigated through bioassays in Swiss mice. Quantification of cyanobacteria in samples was conducted following the Ütermol method, with 300mL samples fixed with lugol. The toxicity test with Ceriodaphnia silvestrii followed ABNT, 2001 recommendations, and were accomplished with natural hepatotoxic bloom s samples and cultured samples of both non-toxic and neurotoxic C. raciborskii. In this test, five newborns, aged between 6 and 24 hours, were exposed to different concentrations (0 a 800 mg.L-1) of crude cyanobacterial extracts during 24 and 48 hours. Three replicates were used per treatment. The pH, temperature and dissolved oxygen at the beginning and after 24 and 48hours from the test were measured. We estimated the CL50 through the Trimmed Spearman-Karber method. The blooms were constituted by Microcystis panniformis, M. aeruginosa, Anabaena circinalis, Cylindrospermopsis raciborskii and Planktothrix agardhii, producers of mycrocistin-LR confirmed with HPLC analysis. Samples of hepatotoxic blooms registered toxinogenic potential for C. silvestrii, with CL50-24h value of 47.48 mg.L-1 and CL5048h of 38.15 mg.L-1 for GARG samples in march/2005; CL50-24h of 113,13 mg.L-1 and CL5048h of 88,24 mg.L-1 for ARG July/2004; CL50-24h of 300.39 mg.L-1 and CL50-48h of 149.89 mg.L-1 for GARG October/2005. For cultured samples, values of CL50-24h and CL50-48h for C. raciborskii toxic strains were 228.05 and 120.28 mg.L-1, respectively. There was no mortality of C. silvestrii during the tests with non-toxic C. raciborskii strain. The toxicity test with C. silvestrii presented good sensitivity degree to cyanotoxins. The toxicity of natural hepatotoxic blooms samples (microcystins) and cultured neurotoxic saxitoxins producer samples analyzed in this study give us strong indications of that toxin s influence on the zooplanktonic community structure in tropical aquatic environments. Eleven cyanobacteria strains were isolated, representing 6 species: Anabaenopsis sp., Cylindrospermopsis raciborskii, Chroococcus sp., Microcystis panniformis, Geitlerinema unigranulatum e Planktothrix agardhii. None presented toxicity in Swiss mice. The strains were catalogued and deposited in the Laboratório de Ecologia e Toxicologia de Organismos Aquáticos (LETMA), in UFRN, and will be utilized in ecotoxicológical and ecophysiological studies, aiming to clarify the causes and control of cyanobacterial blooms in aquatic environments in RN. This state s reservoirs must receive broader attention from the authorities, considering the constant blooms occurring in waters used for human consumption
Resumo:
The objective of this study was to examine the growth of Gracilaria cervicornis cultured in a shrimp (Litopenaeus vannamei) pond and to determine the absorption efficiency and the kinetics parameters (Vmax, Ks e Vmax:Ks) of this macroalgae for the nutrients N-NO3-, N-NH4+ and P-PO4-3, aiming at its use as bioremediatory of eutrophicated environments. For this study, two experiments (field and laboratory) were developed. In the field study, the seaweed was examined in relation to the growth and the biomass. In the laboratory experiment, the absorption efficiency of G. cervicornis was measured through the monitoring of the concentration of the three nutrients (N-NO3-, N-NH4+ e P-PO4-3) during 5 hours and the kinetic parameters were determined through the formula of Michaelis-Menten. The results obtained in this study demonstrated that G. cervicornis benefited from the available nutrients in the pond, increasing 52.4% of its biomass value after 30 days of culture. It was evidenced that the variability of the biomass could be explained through the salinity, availability of light (transparency and solid particle in suspension) and concentration of N-NO3- in the environment. In the laboratory experiment, the highest absorption efficiency was found in the treatments with low concentration (5 µmol.L-1), being evidenced a reduction of up to 85,3%, 97,5% and 81,2% of N-NH4+, N-NO3- and P-PO43-, respectively. Regarding the kinetic parameters, G. cervicornis presented better ability in absorbing N-NH4+ in high concentrations (Vmax = 158,5 µmol g-1 dry wt h-1) and P-PO43- in low concentrations (Ks = 5 µmol.L-1 e Vmax:Ks = 10,3). The results of this study show that G. cervicornis could be cultivated in shrimp ponds, presents a good capacity of absorption for the tested nutrients and is a promising candidate for biorremediation in shrimp pond effluent
Resumo:
In order to evaluating Streptoccocus iniae pathogenicity recovered from trout in Fars province a total number of 400 healthy (15-20g) fingerling fish specimens which were kept in 1000 liters ponds and after spending compatibility (adaptation) period in new environment and desired condition as aspect of temperature, pH, food and density relative to accomplish disease experiments in interamusclar injection method with 3 × 10 3 , 3 × 10 4, 3 × 10 5, 3 × 10 6 ,3 × 10 7 bacterium cell dilutions per each fish, interaperitonal method with 2 × 10 3 , 2 × 10 4, 2 × 10 5, 2 × 10 6 ,2 × 10 7 dilutions of bacterium cell and in water bath method with 2 × 10 3 , 2 × 10 4, 2 × 10 5, 2 × 10 6 2 × 107 dilutions in 20 degree centigrade temperature were used. Control groups according to above (mentioned) method with 0.1cc sterile physiological serum per each fish were injected. Clinical and autopsy signs that observed in injected groups were includes: body darkness, swelling of abdomen, exophthalmy sometime with eye ocular haemorrhagy, anal (rectal) prolaps, blood congestion and petechia in muscles and congestion and haemorrhagy in intestines. Infectious results in interamusclar injection shown that, mortality 22 hours after injection begans and in 3 × 107 cells dilution per each fish 30 hours pass the injection was reached above 50 percent, so that the amount of LD50/ 30h in 3 × 10 7 cells per each fish was estimated. In interaperitonal injection method was shown those 20 hours after injection mortality begins and up to maximum 80 hours after continued and 32 hours after injection in 2 × 10 7 cells dilution mortality was reached above 50 percent, so that LD50 /32 hour in 2 × 10 7 cell dilution per each fish estimated. In water bath method even after sparing 15 days mortality had been too low which indicating long process of disease. By microscopic study of tissues, dilatation of bowman capsule, shrinkage of glomerols, increasing of melano macrophage centers, degeneration, necrosis of urine tubules in kidney tissue, dilatation of sinusoids, congestion of hepatic vessels, increasing of melanoma macrophages and hepatocite vacuolization in liver tissue, spleen congestion, heart pericardit, ocular haemorrhagy, congestion, edema and separating of basement membrane from gill secondary lamellae can be referred.