879 resultados para development need
Resumo:
Background: The tomato (Solanum lycopersicum L.) plant is both an economically important food crop and an ideal dicot model to investigate various physiological phenomena not possible in Arabidopsis thaliana. Due to the great diversity of tomato cultivars used by the research community, it is often difficult to reliably compare phenotypes. The lack of tomato developmental mutants in a single genetic background prevents the stacking of mutations to facilitate analysis of double and multiple mutants, often required for elucidating developmental pathways. Results: We took advantage of the small size and rapid life cycle of the tomato cultivar Micro-Tom (MT) to create near-isogenic lines (NILs) by introgressing a suite of hormonal and photomorphogenetic mutations (altered sensitivity or endogenous levels of auxin, ethylene, abscisic acid, gibberellin, brassinosteroid, and light response) into this genetic background. To demonstrate the usefulness of this collection, we compared developmental traits between the produced NILs. All expected mutant phenotypes were expressed in the NILs. We also created NILs harboring the wild type alleles for dwarf, self-pruning and uniform fruit, which are mutations characteristic of MT. This amplified both the applications of the mutant collection presented here and of MT as a genetic model system. Conclusions: The community resource presented here is a useful toolkit for plant research, particularly for future studies in plant development, which will require the simultaneous observation of the effect of various hormones, signaling pathways and crosstalk.
Resumo:
Premise of study: Microsatellite primers were developed for castor bean (Ricinus communis L.) to investigate genetic diversity and population structure, and to provide support to germplasm management. Methods and Results: Eleven microsatellite loci were isolated using an enrichment cloning protocol and used to characterize castor bean germplasm from the collection at the Instituto Agronomico de Campinas (IAC). In a survey of 76 castor bean accessions, the investigated loci displayed polymorphism ranging from two to five alleles. Conclusions: The information derived from microsatellite markers led to significant gains in conserved allelic richness and provides support to the implementation of several molecular breeding strategies for castor bean.
Resumo:
Premise of the study: Microsatellite primers were developed for Aulonemia aristulata, an endangered species of economic interest, to further describe its genetic variability and population structure. We also tested cross-amplification in 18 other bamboo species. Methods and Results: Using an enrichment genomic library, 13 microsatellite loci were isolated and characterized in A. aristulata. Seven of these loci were polymorphic. Twelve markers were cross-amplified in at least ten of the tested bamboo species. Conclusions: These markers will be useful for studies on the genetic diversity and structure of A. aristulata, which are important for future conservation, management and breeding programs of this species.
Resumo:
Background: MicroRNA (miR) are a class of small RNAs that regulate gene expression by inhibiting translation of protein encoding transcripts. To evaluate the role of miR in skeletal muscle of swine, global microRNA abundance was measured at specific developmental stages including proliferating satellite cells, three stages of fetal growth, day-old neonate, and the adult. Results: Twelve potential novel miR were detected that did not match previously reported sequences. In addition, a number of miR previously reported to be expressed in mammalian muscle were detected, having a variety of abundance patterns through muscle development. Muscle-specific miR-206 was nearly absent in proliferating satellite cells in culture, but was the highest abundant miR at other time points evaluated. In addition, miR-1 was moderately abundant throughout developmental stages with highest abundance in the adult. In contrast, miR-133 was moderately abundant in adult muscle and either not detectable or lowly abundant throughout fetal and neonate development. Changes in abundance of ubiquitously expressed miR were also observed. MiR-432 abundance was highest at the earliest stage of fetal development tested (60 day-old fetus) and decreased throughout development to the adult. Conversely, miR-24 and miR-27 exhibited greatest abundance in proliferating satellite cells and the adult, while abundance of miR-368, miR-376, and miR-423-5p was greatest in the neonate. Conclusion: These data present a complete set of transcriptome profiles to evaluate miR abundance at specific stages of skeletal muscle growth in swine. Identification of these miR provides an initial group of miR that may play a vital role in muscle development and growth.
Resumo:
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) plays an important role in the life cycle of the Trypanosoma cruzi, and an immobilized enzyme reactor (IMER) has been developed for use in the on-line screening for GAPDH inhibitors. An IMER containing human GAPDH has been previously reported; however, these conditions produced a T. cruzi GAPDH-IMER with poor activity and stability. The factors affecting the stability of the human and T. cruzi GAPDHs in the immobilization process and the influence of pH and buffer type on the stability and activity of the IMERs have been investigated. The resulting T. cruzi GAPDH-IMER was coupled to an analytical octyl column, which was used to achieve chromatographic separation of NAD+ from NADH. The production of NADH stimulated by D-glyceraldehyde-3-phosphate was used to investigate the activity and kinetic parameters of the immobilized T. cruzi GAPDH. The Michaelis-Menten constant (K-m) values determined for D-glyceraldehyde-3-phosphate and NAD(+) were K-m = 0.5 +/- 0.05 mM and 0.648 +/- 0.08 mM, respectively, which were consistent with the values obtained using the non-immobilized enzyme.
Resumo:
Among the numerous problems that are common to the Latin-American metropolises, such as the deep socio-spatial segregation, the impressive territorial fragmentation and the real estate valorisation that overvalues some territories, whilst it depreciates others, we have chosen to focus on the management of the metropolitan regions. That question clearly indicates that due to the great current changes of the economical restructuring - a process that strengthened the capitalist logic of social development - the traditional form of thinking urban planning has found its limits. Consequently, this issue of metropolitan management shows the need to look for new ways of metropolitan administration that can answer to the The main metropolitan regions of South America: Buenos Aires, Sao Paulo and Santiago form our references to characterize the recent changes from a territorial point of view on the one hand; and relative to the new determinations of the metropolis on the other hand. This leads us to discuss the challenges that metropolitan management face in a scenario of governability fragmentation.
Resumo:
Background: Hepatitis C virus (HCV) genotyping is the most significant predictor of the response to antiviral therapy. The aim of this study was to develop and evaluate a novel real-time PCR method for HCV genotyping based on the NS5B region. Methodology/Principal Findings: Two triplex reaction sets were designed, one to detect genotypes 1a, 1b and 3a; and another to detect genotypes 2a, 2b, and 2c. This approach had an overall sensitivity of 97.0%, detecting 295 of the 304 tested samples. All samples genotyped by real-time PCR had the same type that was assigned using LiPA version 1 (Line in Probe Assay). Although LiPA v. 1 was not able to subtype 68 of the 295 samples (23.0%) and rendered different subtype results from those assigned by real-time PCR for 12/295 samples (4.0%), NS5B sequencing and real-time PCR results agreed in all 146 tested cases. Analytical sensitivity of the real-time PCR assay was determined by end-point dilution of the 5000 IU/ml member of the OptiQuant HCV RNA panel. The lower limit of detection was estimated to be 125 IU/ml for genotype 3a, 250 IU/ml for genotypes 1b and 2b, and 500 IU/ml for genotype 1a. Conclusions/Significance: The total time required for performing this assay was two hours, compared to four hours required for LiPA v. 1 after PCR-amplification. Furthermore, the estimated reaction cost was nine times lower than that of available commercial methods in Brazil. Thus, we have developed an efficient, feasible, and affordable method for HCV genotype identification.
Resumo:
Background: Preconception allergen immunization prevents neonatal allergen sensitization in mice by a complex interaction between regulatory cells/factors and antibodies. The present study assessed the influence of maternal immunization with ovalbumin (OVA) on the immune response of 3 day-old and 3 week-old offspring immunized or non-immunized with OVA and evaluated the effect of IgG treatment during fetal development or neonatal period. Results: Maternal immunization with OVA showed increased levels of Fc gamma RIIb expression in splenic B cells of neonates, which were maintained for up to 3 weeks and not affected by additional postnatal OVA immunization. Maternal immunization also exerted a down-modulatory effect on both IL-4 and IFN-gamma-secreting T cells and IL-4 and IL-12-secreting B cells. Furthermore, immunized neonates from immunized mothers showed a marked inhibition of antigen-specifc IgE Ab production and lowered Th2/Th1 cytokine levels, whereas displaying enhanced Fc gamma RIIb expression on B cells. These offspring also showed reduced antigen-specific proliferative response and lowered B cell responsiveness. Moreover, in vitro evaluation revealed an impairment of B cell activation upon engagement of B cell antigen receptor by IgG from OVA-immunized mice. Finally, in vivo IgG transference during pregnancy or breastfeeding revealed that maternal Ab transference was able to increase regulatory cytokines, such as IL-10, in the prenatal stage; yet only the postnatal treatment prevented neonatal sensitization. None of the IgG treatments induced immunological changes in the offspring, as it was observed for those from OVA-immunized mothers. Conclusion: Maternal immunization upregulates the inhibitory Fc gamma RIIb expression on offspring B cells, avoiding skewed Th2 response and development of allergy. These findings contribute to the advancement of prophylactic strategies to prevent allergic diseases in early life.
Resumo:
Background: Children born small for gestational age (SGA) experience higher rates of morbidity and mortality than those born appropriate for gestational age. In Latin America, identification and optimal management of children born SGA is a critical issue. Leading experts in pediatric endocrinology throughout Latin America established working groups in order to discuss key challenges regarding the evaluation and management of children born SGA and ultimately develop a consensus statement. Discussion: SGA is defined as a birth weight and/or birth length greater than 2 standard deviations (SD) below the population reference mean for gestational age. SGA refers to body size and implies length-weight reference data in a geographical population whose ethnicity is known and specific to this group. Ideally, each country/region within Latin America should establish its own standards and make relevant updates. SGA children should be evaluated with standardized measures by trained personnel every 3 months during year 1 and every 6 months during year 2. Those without catch-up growth within the first 6 months of life need further evaluation, as do children whose weight is <= -2 SD at age 2 years. Growth hormone treatment can begin in SGA children > 2 years with short stature (< -2.0 SD) and a growth velocity < 25th percentile for their age, and should continue until final height (a growth velocity below 2 cm/year or a bone age of > 14 years for girls and > 16 years for boys) is reached. Blood glucose, thyroid function, HbA1c, and insulin-like growth factor-1 (IGF-1) should be monitored once a year. Monitoring insulin changes from baseline and surrogates of insulin sensitivity is essential. Reduced fetal growth followed by excessive postnatal catch-up in height, and particularly in weight, should be closely monitored. In both sexes, gonadal function should be monitored especially during puberty. Summary: Children born SGA should be carefully followed by a multidisciplinary group that includes perinatologists, pediatricians, nutritionists, and pediatric endocrinologists since 10% to 15% will continue to have weight and height deficiency through development and may benefit from growth hormone treatment. Standards/guidelines should be developed on a country/region basis throughout Latin America.
Resumo:
Adipose tissue-derived stem cells (ASCs) are among the more attractive adult stem cell options for potential therapeutic applications. Here, we studied and compared the basic biological characteristics of ASCs isolated from humans (hASCs) and mice (mASCs) and maintained in identical culture conditions, which must be examined prior to considering further potential clinical applications. hASCs and mASCs were compared for immunophenotype, differentiation potential, cell growth characteristics, senescence, nuclear morphology, and DNA content. Although both strains of ASCs displayed a similar immunophenotype, the percentage of CD73(+) cells was markedly lower and CD31(+) was higher in mASC than in hASC cultures. The mean population doubling time was 98.08 +/- 6.15 h for hASCs and 52.58 +/- 3.74 h for mASCs. The frequency of nuclear aberrations was noticeably lower in hASCs than in mASCs regardless of the passage number. Moreover, as the cells went through several in vitro passages, mASCs showed changes in DNA content and cell cycle kinetics (frequency of hypodiploid, G0/G1, G2/M, and hyperdiploid cells), whereas all of these parameters remained constant in hASCs. Collectively, these results suggest that mASCs display higher proliferative capacity and are more unstable than hASCs in long-term cultures. These results underscore the need to consider specificities among model systems that may influence outcomes when designing potential human applications.
Resumo:
The purpose of this study was to determine if performing isometric 3-point kneeling exercises on a Swiss ball influenced the isometric force output and EMG activities of the shoulder muscles when compared with performing the same exercises on a stable base of support. Twenty healthy adults performed the isometric 3-point kneeling exercises with the hand placed either on a stable surface or on a Swiss ball. Surface EMG was recorded from the posterior deltoid, pectoralis major, biceps brachii, triceps brachii, upper trapezius, and serratus anterior muscles using surface differential electrodes. All EMG data were reported as percentages of the average root mean square (RMS) values obtained in maximum voluntary contractions for each muscle studied. The highest load value was obtained during exercise on a stable surface. A significant increase was observed in the activation of glenohumeral muscles during exercises on a Swiss ball. However, there were no differences in EMG activities of the scapulothoracic muscles. These results suggest that exercises performed on unstable surfaces may provide muscular activity levels similar to those performed on stable surfaces, without the need to apply greater external loads to the musculoskeletal system. Therefore, exercises on unstable surfaces may be useful during the process of tissue regeneration.
Resumo:
Background: Rotational osteotomy is frequently indicated to correct excessive femoral anteversion in cerebral palsy patients. Angled blade plate is the standard fixation device used when performed in the proximal femur, but extensile exposure is required for plate accommodation. The authors developed a short locked intramedullary nail to be applied percutaneously in the fixation of femoral rotational osteotomies in children with cerebral palsy and evaluated its mechanical properties. Methods: The study was divided into three stages. In the first part, a prototype was designed and made based on radiographic measurements of the femoral medullary canal of ten-year-old patients. In the second, synthetic femoral models based on rapid-prototyping of 3D reconstructed images of patients with cerebral palsy were obtained and were employed to adjust the nail prototype to the morphological changes observed in this disease. In the third, rotational osteotomies were simulated using synthetic femoral models stabilized by the nail and by the AO-ASIF fixed-angle blade plate. Mechanical testing was done comparing both devices in bending-compression and torsion. Results: The authors observed proper adaptation of the nail to normal and morphologically altered femoral models, and during the simulated osteotomies. Stiffness in bending-compression was significantly higher in the group fixed by the plate (388.97 +/- 57.25 N/mm) than in that fixed by the nail (268.26 +/- 38.51 N/mm) as torsional relative stiffness was significantly higher in the group fixed by the plate (1.07 +/- 0.36 Nm/degrees) than by the nail (0.35 +/- 0.13 Nm/degrees). Conclusions: Although the device presented adequate design and dimension to fit into the pediatric femur, mechanical tests indicated that the nail was less stable than the blade plate in bending-compression and torsion. This may be a beneficial property, and it can be attributed to the more flexible fixation found in intramedullary devices.
Resumo:
The objective was to determine whether aging of sperm caused by incubation at normothermic (38.5 C) or heat shock (40 C) temperatures for 4 h prior to oocyte insemination affects sperm motility, fertilizing ability, competence of the resultant embryo to develop to the blastocyst stage and blastocyst sex ratio. In the first experiment, the percent of sperm that were motile was reduced by aging (P<0.001) and the reduction in motility was greater for sperm at 40 C compared to sperm at 38.5 C (P<0.01). In the second experiment, oocytes were inseminated with aged sperm. A smaller percent of oocytes fertilized with sperm aged at either temperature cleaved by Day 3 after insemination than oocytes fertilized with fresh sperm (P<0.05). There was no effect of sperm aging on the percent of oocytes or cleaved embryos that developed to the blastocyst stage. Aging of sperm before fertilization at 38.5 C reduced the percent of blastocysts that were male (P=0.08). In the third experiment, incubation of sperm at 38.5 C or 40 C for 4 h did not reduce fertilizing ability of sperm as determined by pronuclear formation at 18 h post insemination. In conclusion, aging of sperm reduced cleavage rate and the percent of blastocysts that were males but had no effect on the developmental capacity of the. embryo. The effect of aging on cleavage rate may represent reduced motility and errors occurring after fertilization and pronuclear formation. Aging at a temperature characteristic of maternal hyperthermia had little additional effect except that polyspermy was reduced. Results indicate that embryo competence for development to the blastocyst stage is independent of sperm damage as a result of aging for 4 h at normothermic or hyperthermic temperatures.
Resumo:
In early development, female embryos (XX) produce twice the transcripts of X-linked genes compared with male embryos (XY). During the course of development, inactivation of the X chromosome equilibrates gene dosage, making the development of female embryos viable. Moreover, the biotechnologies used for producing embryos in vitro seem to work better with male embryos, making it easier for them to reach the blastocyst stage and allow for complete gestation. We investigated the expression of three X-linked genes that are involved in development, XIST, G6PD, and HPRT, and of the transcript interferon-tau, in male and female bovine blastocysts produced by nuclear transfer (NT) and by in vitro fertilization (IVF). Oocytes that had been matured in vitro were enucleated and reconstructed with somatic cells from adult animals at 18 h post-maturation. After fusion (two pulses of 2.25 kv/cm) and chemical activation (5.0 mu M ionomycin for 5 min and 2.0 mM 6-DMAP for 3 h), the oocytesomatic cell units were cultivated in CR2 with a monolayer of granulosa cells at 38.8 degrees C, in a humidified 5% CO(2) atmosphere. IVF embryos were inseminated, after centrifugation in a Percoll gradient, with 2 x 10(6) sperm/mL TALP medium supplemented with BSA and PHE and cultivated under the same conditions as the cloned embryos. We used real-time PCR to analyze the gene expression of individual blastocysts compared to expression of the housekeeping gene, GAPDH. The gene XIST was expressed in female embryos and not in male embryos produced by IVF, though it was expressed at low levels in male embryos produced by NT. Unlike previous reports, we found lower levels of the transcript of G6PD in females than in males, suggesting double silencing or other mechanisms of control of this gene. Female embryos produced by IVF expressed the HPRT gene at a higher level than female embryos produced by NT, suggesting that gene silencing proceeds faster in NT-produced female embryos due to ""inactivation memory"" from the nucleus donor. In conclusion, male and female embryos express different levels of X-chromosome genes and failures of these genes that are essential for development could reduce the viability of females. Nuclear transfer can modify this relation, possibly due to epigenetic memory, leading to frequent failures in nuclear reprogramming.
Resumo:
The relationship between the level of cell confluence near the plateau phase of growth and blastocyst yield following somatic cell cloning is not well understood. We examined the effect of distinct cell culture confluence levels on in vitro development of cloned bovine embryos. In vitro-matured bovine oocytes were manually bisected and selected by DNA staining. One or two enucleated hemi-cytoplasts were paired and fused with an adult skin somatic cell. Cultured skin cells from an adult Nellore cow harvested at three distinct culture confluence levels (70-80, 80-90, and > 95%) were used for construction of embryos and hemi-embryos. After activation, structures were cultured in vitro as one embryo (1 x 100%) or as aggregates of two hemi-embryos (2 x 50%) per microwell. Fusion, cleavage and blastocyst rates were compared using the chi(2) test. The fusion rate for hemi-embryos (51.4%) was lower than for embryos (67.6%), with no influence of degree of cell confluence. However, blastocyst rates improved linearly (7.0, 17.5, and 29.4%) with increases in cell confluence. We conclude that degree of cell culture confluence significantly influences subsequent embryo development; use of a cell population in high confluence (> 90%) for nuclear transfer significantly improved blastocyst yield after cloning.