903 resultados para developed and emerging market contexts
Resumo:
Due to the importance and wide applications of the DNA analysis, there is a need to make genetic analysis more available and more affordable. As such, the aim of this PhD thesis is to optimize a colorimetric DNA biosensor based on gold nanoprobes developed in CEMOP by reducing its price and the needed volume of solution without compromising the device sensitivity and reliability, towards the point of care use. Firstly, the price of the biosensor was decreased by replacing the silicon photodetector by a low cost, solution processed TiO2 photodetector. To further reduce the photodetector price, a novel fabrication method was developed: a cost-effective inkjet printing technology that enabled to increase TiO2 surface area. Secondly, the DNA biosensor was optimized by means of microfluidics that offer advantages of miniaturization, much lower sample/reagents consumption, enhanced system performance and functionality by integrating different components. In the developed microfluidic platform, the optical path length was extended by detecting along the channel and the light was transmitted by optical fibres enabling to guide the light very close to the analysed solution. Microfluidic chip of high aspect ratio (~13), smooth and nearly vertical sidewalls was fabricated in PDMS using a SU-8 mould for patterning. The platform coupled to the gold nanoprobe assay enabled detection of Mycobacterium tuberculosis using 3 8l on DNA solution, i.e. 20 times less than in the previous state-of-the-art. Subsequently, the bio-microfluidic platform was optimized in terms of cost, electrical signal processing and sensitivity to colour variation, yielding 160% improvement of colorimetric AuNPs analysis. Planar microlenses were incorporated to converge light into the sample and then to the output fibre core increasing 6 times the signal-to-losses ratio. The optimized platform enabled detection of single nucleotide polymorphism related with obesity risk (FTO) using target DNA concentration below the limit of detection of the conventionally used microplate reader (i.e. 15 ng/μl) with 10 times lower solution volume (3 μl). The combination of the unique optical properties of gold nanoprobes with microfluidic platform resulted in sensitive and accurate sensor for single nucleotide polymorphism detection operating using small volumes of solutions and without the need for substrate functionalization or sophisticated instrumentation. Simultaneously, to enable on chip reagents mixing, a PDMS micromixer was developed and optimized for the highest efficiency, low pressure drop and short mixing length. The optimized device shows 80% of mixing efficiency at Re = 0.1 in 2.5 mm long mixer with the pressure drop of 6 Pa, satisfying requirements for the application in the microfluidic platform for DNA analysis.
Resumo:
The increasing use of information and communication technologies (ICT) in diverse professional and personal contexts calls for new knowledge, and a set of abilities, competences and attitudes, for an active and participative citizenship. In this context it is acknowledged that universities have an important role innovating in the educational use of digital media to promote an inclusive digital literacy. The educational potential of digital technologies and resources has been recognized by both researchers and practitioners. Multiple pedagogical models and research approaches have already contributed to put in evidence the importance of adapting instructional and learning practices and processes to concrete contexts and educational goals. Still, academic and scientific communities believe further investments in ICT research is needed in higher education. This study focuses on educational models that may contribute to support digital technology uses, where these can have cognitive and educational relevance when compared to analogical technologies. A teaching and learning model, centered in the active role of the students in the exploration, production, presentation and discussion of interactive multimedia materials, was developed and applied using the internet and exploring emergent semantic hypermedia formats. The research approach focused on the definition of design principles for developing class activities that were applied in three different iterations in undergraduate courses from two institutions, namely the University of Texas at Austin, USA and the University of Lisbon, Portugal. The analysis of this study made possible to evaluate the potential and efficacy of the model proposed and the authoring tool chosen in the support of metacognitive skills and attitudes related to information structuring and management, storytelling and communication, using computers and the internet.
Resumo:
Requirements Engineering has been acknowledged an essential discipline for Software Quality. Poorly-defined processes for eliciting, analyzing, specifying and validating requirements can lead to unclear issues or misunderstandings on business needs and project’s scope. These typically result in customers’ non-satisfaction with either the products’ quality or the increase of the project’s budget and duration. Maturity models allow an organization to measure the quality of its processes and improve them according to an evolutionary path based on levels. The Capability Maturity Model Integration (CMMI) addresses the aforementioned Requirements Engineering issues. CMMI defines a set of best practices for process improvement that are divided into several process areas. Requirements Management and Requirements Development are the process areas concerned with Requirements Engineering maturity. Altran Portugal is a consulting company concerned with the quality of its software. In 2012, the Solution Center department has developed and applied successfully a set of processes aligned with CMMI-DEV v1.3, what granted them a Level 2 maturity certification. For 2015, they defined an organizational goal of addressing CMMI-DEV maturity level 3. This MSc dissertation is part of this organization effort. In particular, it is concerned with the required process areas that address the activities of Requirements Engineering. Our main goal is to contribute for the development of Altran’s internal engineering processes to conform to the guidelines of the Requirements Development process area. Throughout this dissertation, we started with an evaluation method based on CMMI and conducted a compliance assessment of Altran’s current processes. This allowed demonstrating their alignment with the CMMI Requirements Management process area and to highlight the improvements needed to conform to the Requirements Development process area. Based on the study of alternative solutions for the gaps found, we proposed a new Requirements Management and Development process that was later validated using three different approaches. The main contribution of this dissertation is the new process developed for Altran Portugal. However, given that studies on these topics are not abundant in the literature, we also expect to contribute with useful evidences to the existing body of knowledge with a survey on CMMI and requirements engineering trends. Most importantly, we hope that the implementation of the proposed processes’ improvements will minimize the risks of mishandled requirements, increasing Altran’s performance and taking them one step further to the desired maturity level.
Resumo:
Author's pre-print
Resumo:
INTRODUCTION: According to reports by the Ministry of Health, in the far western region of the State of Santa Catarina, there have been no reports of hantavirus pulmonary syndrome, a zoonotic disease transmitted by feces of infected rodents. A seroepidemiological study of residents of this region, was conducted, with the aim of determining the presence of hantavirus infections. A total of 340 volunteers of both genus, from the towns of Belmonte and Paraíso, were studied. METHODS: The serum of these patients was collected and used to detect IgG antibodies against recombinant N protein of Araraquara hantavirus, by ELISA assay. The positive samples were then titrated and confirmed by immunofluorescence assay. RESULTS: This study demonstrated the presence of IgG antibodies against hantavirus N protein in 3.5% of the population. The most frequent occupation was farm worker, 81% had direct and indirect contact with rodents, 91.7% of positive cases were farm workers, indicating that the probable cause of infection occurred during barn cleaning. These antibodies are noteworthy, given that the levels of antibodies were verified in individuals whose contact with hantavirus may have occurred many years ago. CONCLUSIONS: This study shows the circulation of hantavirus in the region, a fact that until now, had not reported. All the serum reagents had contact with the pathogen, but did not develop pulmonary and cardiovascular syndrome. It is important to remain alert, because hantavirus is a serious and emerging disease of some relevance.
Resumo:
Zero valent iron nanoparticles (nZVI) are considered very promising for the remediation of contaminated soils and groundwaters. However, an important issue related to their limited mobility remains unsolved. Direct current can be used to enhance the nanoparticles transport, based on the same principles of electrokinetic remediation. In this work, a generalized physicochemical model was developed and solved numerically to describe the nZVI transport through porous media under electric field, and with different electrolytes (with different ionic strengths). The model consists of the Nernst–Planck coupled system of equations, which accounts for the mass balance of ionic species in a fluid medium, when both the diffusion and electromigration of the ions are considered. The diffusion and electrophoretic transport of the negatively charged nZVI particles were also considered in the system. The contribution of electroosmotic flow to the overall mass transport was included in the model for all cases. The nZVI effective mobility values in the porous medium are very low (10−7–10−4 cm2 V−1 s−1), due to the counterbalance between the positive electroosmotic flow and the electrophoretic transport of the negatively charged nanoparticles. The higher the nZVI concentration is in the matrix, the higher the aggregation; therefore, low concentration of nZVI suspensions must be used for successful field application.
Resumo:
Field Lab in Entrepreneurial Innovative Ventures
Resumo:
Clinical research is essential for the development of new drugs, diagnostic tests and new devices. Clinical monitoring is implemented to improve the quality of research and attain high ethical and scientific standards. This review discusses the role of clinical monitors, taking into account the variety of scenarios in which medical research is developed, and highlights the challenges faced by research teams to ensure that patients rights are respected and that the social role of scientific research is preserved. Specific emphasis is given to the ethical dilemmas related to the multiple roles which clinical monitors play in the research framework, mainly those involving the delicate equilibrium between the loyalty to the sponsor and to the research subjects. The essential role of clinical monitoring for research developed in poor healthcare scenarios is highlighted as an approach to get the local infrastructure strengthening needed to achieve an adequate level of good clinical practices.
Resumo:
The Purpose of this Work Project is to develop a Marketing plan, with a special focus on promotional activities and partnerships’ developments, for the Big Slice, a fast food Pizzeria that is currently operating in Lisbon, where I'm currently working in the marketing and promotion department. The project aims at developing promotions and key partnerships that maximize the opportunity. For that, I have analyzed the major trends in the food sector in Portugal, and I have conducted several qualitative interviews among young individuals. Finally I have developed and implemented various alternative promotions and established important key partnerships.
Resumo:
The present paper is a personal reflection on a work project carried out to promote exports from Portugal to Germany in the IT area, under consideration of the deliverables required by the clients CCILA and Anetie. The project outcome approaches the fact that the majority of the Portuguese market players has disadvantages in size and does rarely coordinate activities among each other, which hinders them to export successfully on a broad scale. To bring together Portuguese delivery potential and German market demand, expert interviews were conducted. Based on the findings, a concept was developed to overcome the domestic collaboration issues in order to strengthen the national exports in the identified sector - embedded systems implementation services for machinery and equipment companies.
Resumo:
A few decades ago, global management consulting was considered to be one of the most attractive industries due to its abnormal high profit margins and above-average growth rates. However, after the dot-com bubble in 2000 and the last global financial crisis, firms folded and growth rates declined sharply. In an attempt to overcome the uncertainty and information volatility, internationalization is commonly cited as a good strategy. WMC, a Portuguese SME founded in 2012, has now decided to expand its management consulting services. Therefore, a scoring model was created to assess selected European countries’ attractiveness taking into consideration macro and microeconomic data. Results show that Spain is the best option at the moment, mainly because it is where the company has the larger number of projects already developed and is more likely to leverage its network.
Resumo:
This project explores the case of Sustainability Reporting in Spain and Portugal and the recently launched new generation of Global Reporting Initiative Guidelines. The sample of the study is composed of companies included in the “GRI Report list 1999-2015”. In particular 2013 onwards 51 companies that published their G4 Report are taken into consideration. An indirect study is conducted based on the content of the sustainability reports of companies that implemented the Global Report Initiatives (GRI) reporting guidelines in order to identify focus areas of sustainability reporting in Spain and Portugal, analyzing trends and patterns relevant for observation. The project also promotes a discussion of the usability of the G4 guidelines and the adoption of materiality definition.
Resumo:
The presented dissertation was developed within a partnership between Nova School of Business and Economics and the Portuguese retailer Sonae MC. The main objective of the study was to develop an analysis for the confectionary category to identify potential development opportunities for new Private Label products. In order to do so, the starting point was to understand how the confectionery market was behaving, followed by and understanding of Continente’s performance in that market. Aiming to point out development opportunities, the analysis was split between the subcategories – Chocolate, Chewing Gums and Sweets. The Subcategory performance was assessed in terms of sales, number of SKU’s, Private Label weight and it market position in terms of share. For the potential development opportunities a comparison between the top selling Branded Product and the competitors’ position was developed, in order to establish a reasonable size and retail price for such products. Key Word: Private Label, Branded Products, Continente, Sonae MC, Retail, SKU’s, Sales, Price, Market Share,
Resumo:
Introduction Molecular biology procedures to detect, genotype and quantify hepatitis C virus (HCV) RNA in clinical samples have been extensively described. Routine commercial methods for each specific purpose (detection, quantification and genotyping) are also available, all of which are typically based on polymerase chain reaction (PCR) targeting the HCV 5′ untranslated region (5′UTR). This study was performed to develop and validate a complete serial laboratory assay that combines real-time nested reverse transcription-polymerase chain reaction (RT-PCR) and restriction fragment length polymorphism (RFLP) techniques for the complete molecular analysis of HCV (detection, genotyping and viral load) in clinical samples. Methods Published HCV sequences were compared to select specific primers, probe and restriction enzyme sites. An original real-time nested RT-PCR-RFLP assay was then developed and validated to detect, genotype and quantify HCV in plasma samples. Results The real-time nested RT-PCR data were linear and reproducible for HCV analysis in clinical samples. High correlations (> 0.97) were observed between samples with different viral loads and the corresponding read cycle (Ct - Cycle threshold), and this part of the assay had a wide dynamic range of analysis. Additionally, HCV genotypes 1, 2 and 3 were successfully distinguished using the RFLP method. Conclusions A complete serial molecular assay was developed and validated for HCV detection, quantification and genotyping.
Resumo:
Polysaccharides are gaining increasing attention as potential environmental friendly and sustainable building blocks in many fields of the (bio)chemical industry. The microbial production of polysaccharides is envisioned as a promising path, since higher biomass growth rates are possible and therefore higher productivities may be achieved compared to vegetable or animal polysaccharides sources. This Ph.D. thesis focuses on the modeling and optimization of a particular microbial polysaccharide, namely the production of extracellular polysaccharides (EPS) by the bacterial strain Enterobacter A47. Enterobacter A47 was found to be a metabolically versatile organism in terms of its adaptability to complex media, notably capable of achieving high growth rates in media containing glycerol byproduct from the biodiesel industry. However, the industrial implementation of this production process is still hampered due to a largely unoptimized process. Kinetic rates from the bioreactor operation are heavily dependent on operational parameters such as temperature, pH, stirring and aeration rate. The increase of culture broth viscosity is a common feature of this culture and has a major impact on the overall performance. This fact complicates the mathematical modeling of the process, limiting the possibility to understand, control and optimize productivity. In order to tackle this difficulty, data-driven mathematical methodologies such as Artificial Neural Networks can be employed to incorporate additional process data to complement the known mathematical description of the fermentation kinetics. In this Ph.D. thesis, we have adopted such an hybrid modeling framework that enabled the incorporation of temperature, pH and viscosity effects on the fermentation kinetics in order to improve the dynamical modeling and optimization of the process. A model-based optimization method was implemented that enabled to design bioreactor optimal control strategies in the sense of EPS productivity maximization. It is also critical to understand EPS synthesis at the level of the bacterial metabolism, since the production of EPS is a tightly regulated process. Methods of pathway analysis provide a means to unravel the fundamental pathways and their controls in bioprocesses. In the present Ph.D. thesis, a novel methodology called Principal Elementary Mode Analysis (PEMA) was developed and implemented that enabled to identify which cellular fluxes are activated under different conditions of temperature and pH. It is shown that differences in these two parameters affect the chemical composition of EPS, hence they are critical for the regulation of the product synthesis. In future studies, the knowledge provided by PEMA could foster the development of metabolically meaningful control strategies that target the EPS sugar content and oder product quality parameters.