935 resultados para data gathering
Resumo:
The geographic location of cloud data storage centres is an important issue for many organisations and individuals due to various regulations that require data and operations to reside in specific geographic locations. Thus, cloud users may want to be sure that their stored data have not been relocated into unknown geographic regions that may compromise the security of their stored data. Albeshri et al. (2012) combined proof of storage (POS) protocols with distance-bounding protocols to address this problem. However, their scheme involves unnecessary delay when utilising typical POS schemes due to computational overhead at the server side. The aim of this paper is to improve the basic GeoProof protocol by reducing the computation overhead at the server side. We show how this can maintain the same level of security while achieving more accurate geographic assurance.
Resumo:
Prophylactic surgery including hysterectomy and bilateral salpingo-oophorectomy (BSO) is recommended in BRCA positive women, while in women from the general population, hysterectomy plus BSO may increase the risk of overall mortality. The effect of hysterectomy plus BSO on women previously diagnosed with breast cancer is unknown. We used data from a population-base data linkage study of all women diagnosed with primary breast cancer in Queensland, Australia between 1997 and 2008 (n=21,067). We fitted flexible parametric breast cancer specific and overall survival models with 95% confidence intervals (also known as Royston-Parmar models) to assess the impact of risk-reducing surgery (removal of uterus, one or both ovaries). We also stratified analyses by age 20-49 and 50-79 years, respectively. Overall, 1,426 women (7%) underwent risk-reducing surgery (13% of premenopausal women and 3% of postmenopausal women). No women who had risk-reducing surgery, compared to 171 who did not have risk-reducing surgery developed a gynaecological cancer. Overall, 3,165 (15%) women died, including 2,195 (10%) from breast cancer. Hysterectomy plus BSO was associated with significantly reduced risk of death overall (adjusted HR = 0.69, 95% CI 0.53-0.89; P =0.005). Risk reduction was greater among premenopausal women, whose risk of death halved (HR, 0.45; 95% CI, 0.25-0.79; P < 0.006). This was largely driven by reduction in breast cancer-specific mortality (HR, 0.43; 95% CI, 0.24-0.79; P < 0.006). This population-based study found that risk-reducing surgery halved the mortality risk for premenopausal breast cancer patients. Replication of our results in independent cohorts, and subsequently randomised trials are needed to confirm these findings.
Resumo:
For industrial wireless sensor networks, maintaining the routing path for a high packet delivery ratio is one of the key objectives in network operations. It is important to both provide the high data delivery rate at the sink node and guarantee a timely delivery of the data packet at the sink node. Most proactive routing protocols for sensor networks are based on simple periodic updates to distribute the routing information. A faulty link causes packet loss and retransmission at the source until periodic route update packets are issued and the link has been identified as broken. We propose a new proactive route maintenance process where periodic update is backed-up with a secondary layer of local updates repeating with shorter periods for timely discovery of broken links. Proposed route maintenance scheme improves reliability of the network by decreasing the packet loss due to delayed identification of broken links. We show by simulation that proposed mechanism behaves better than the existing popular routing protocols (AODV, AOMDV and DSDV) in terms of end-to-end delay, routing overhead, packet reception ratio.
Resumo:
Facial expression recognition (FER) systems must ultimately work on real data in uncontrolled environments although most research studies have been conducted on lab-based data with posed or evoked facial expressions obtained in pre-set laboratory environments. It is very difficult to obtain data in real-world situations because privacy laws prevent unauthorized capture and use of video from events such as funerals, birthday parties, marriages etc. It is a challenge to acquire such data on a scale large enough for benchmarking algorithms. Although video obtained from TV or movies or postings on the World Wide Web may also contain ‘acted’ emotions and facial expressions, they may be more ‘realistic’ than lab-based data currently used by most researchers. Or is it? One way of testing this is to compare feature distributions and FER performance. This paper describes a database that has been collected from television broadcasts and the World Wide Web containing a range of environmental and facial variations expected in real conditions and uses it to answer this question. A fully automatic system that uses a fusion based approach for FER on such data is introduced for performance evaluation. Performance improvements arising from the fusion of point-based texture and geometry features, and the robustness to image scale variations are experimentally evaluated on this image and video dataset. Differences in FER performance between lab-based and realistic data, between different feature sets, and between different train-test data splits are investigated.
Resumo:
In this paper, we present WebPut, a prototype system that adopts a novel web-based approach to the data imputation problem. Towards this, Webput utilizes the available information in an incomplete database in conjunction with the data consistency principle. Moreover, WebPut extends effective Information Extraction (IE) methods for the purpose of formulating web search queries that are capable of effectively retrieving missing values with high accuracy. WebPut employs a confidence-based scheme that efficiently leverages our suite of data imputation queries to automatically select the most effective imputation query for each missing value. A greedy iterative algorithm is proposed to schedule the imputation order of the different missing values in a database, and in turn the issuing of their corresponding imputation queries, for improving the accuracy and efficiency of WebPut. Moreover, several optimization techniques are also proposed to reduce the cost of estimating the confidence of imputation queries at both the tuple-level and the database-level. Experiments based on several real-world data collections demonstrate not only the effectiveness of WebPut compared to existing approaches, but also the efficiency of our proposed algorithms and optimization techniques.
Resumo:
A retrospective, descriptive analysis of a sample of children under 18 years presenting to a hospital emergency department (ED) for treatment of an injury was conducted. The aim was to explore characteristics and identify differences between children assigned abuse codes and children assigned unintentional injury codes using an injury surveillance database. Only 0.1% of children had been assigned the abuse code and 3.9% a code indicating possible abuse. Children between 2-5 years formed the largest proportion of those coded to abuse. Superficial injury and bruising were the most common types of injury seen in children in the abuse group and the possible abuse group (26.9% and 18.8% respectively), whereas those with unintentional injury were most likely to present with open wounds (18.4%). This study demonstrates that routinely collected injury surveillance data can be a useful source of information for describing injury characteristics in children assigned abuse codes compared to those assigned no abuse codes.
Resumo:
Aims: To compare different methods for identifying alcohol involvement in injury-related emergency department presentation in Queensland youth, and to explore the alcohol terminology used in triage text. Methods: Emergency Department Information System data were provided for patients aged 12-24 years with an injury-related diagnosis code for a 5 year period 2006-2010 presenting to a Queensland emergency department (N=348895). Three approaches were used to estimate alcohol involvement: 1) analysis of coded data, 2) mining of triage text, and 3) estimation using an adaptation of alcohol attributable fractions (AAF). Cases were identified as ‘alcohol-involved’ by code and text, as well as AAF weighted. Results: Around 6.4% of these injury presentations overall had some documentation of alcohol involvement, with higher proportions of alcohol involvement documented for 18-24 year olds, females, indigenous youth, where presentations occurred on a Saturday or Sunday, and where presentations occurred between midnight and 5am. The most common alcohol terms identified for all subgroups were generic alcohol terms (eg. ETOH or alcohol) with almost half of the cases where alcohol involvement was documented having a generic alcohol term recorded in the triage text. Conclusions: Emergency department data is a useful source of information for identification of high risk sub-groups to target intervention opportunities, though it is not a reliable source of data for incidence or trend estimation in its current unstandardised form. Improving the accuracy and consistency of identification, documenting and coding of alcohol-involvement at the point of data capture in the emergency department is the most desirable long term approach to produce a more solid evidence base to support policy and practice in this field.
Resumo:
Talk of Big Data seems to be everywhere. Indeed, the apparently value-free concept of ‘data’ has seen a spectacular broadening of popular interest, shifting from the dry terminology of labcoat-wearing scientists to the buzzword du jour of marketers. In the business world, data is increasingly framed as an economic asset of critical importance, a commodity on a par with scarce natural resources (Backaitis, 2012; Rotella, 2012). It is social media that has most visibly brought the Big Data moment to media and communication studies, and beyond it, to the social sciences and humanities. Social media data is one of the most important areas of the rapidly growing data market (Manovich, 2012; Steele, 2011). Massive valuations are attached to companies that directly collect and profit from social media data, such as Facebook and Twitter, as well as to resellers and analytics companies like Gnip and DataSift. The expectation attached to the business models of these companies is that their privileged access to data and the resulting valuable insights into the minds of consumers and voters will make them irreplaceable in the future. Analysts and consultants argue that advanced statistical techniques will allow the detection of ongoing communicative events (natural disasters, political uprisings) and the reliable prediction of future ones (electoral choices, consumption)...
Resumo:
Introduction: The built environment is increasingly recognised as being associated with health outcomes. Relationships between the built environment and health differ among age groups, especially between children and adults, but also between younger, mid-age and older adults. Yet few address differences across life stage groups within a single population study. Moreover, existing research mostly focuses on physical activity behaviours, with few studying objective clinical and mental health outcomes. The Life Course Built Environment and Health (LCBEH) project explores the impact of the built environment on self-reported and objectively measured health outcomes in a random sample of people across the life course. Methods and analysis: This cross-sectional data linkage study involves 15 954 children (0–15 years), young adults (16–24 years), adults (25–64 years) and older adults (65+years) from the Perth metropolitan region who completed the Health and Wellbeing Surveillance System survey administered by the Department of Health of Western Australia from 2003 to 2009. Survey data were linked to Western Australia's (WA) Hospital Morbidity Database System (hospital admission) and Mental Health Information System (mental health system outpatient) data. Participants’ residential address was geocoded and features of their ‘neighbourhood’ were measured using Geographic Information Systems software. Associations between the built environment and self-reported and clinical health outcomes will be explored across varying geographic scales and life stages. Ethics and dissemination: The University of Western Australia's Human Research Ethics Committee and the Department of Health of Western Australia approved the study protocol (#2010/1). Findings will be published in peer-reviewed journals and presented at local, national and international conferences, thus contributing to the evidence base informing the design of healthy neighbourhoods for all residents.
Resumo:
Silver dressings have been widely used to successfully prevent burn wound infection and sepsis. However, a few case studies have reported the functional abnormality and failure of vital organs, possibly caused by silver deposits. The aim of this study was to investigate the serum silver level in the pediatric burn population and also in several internal organs in a porcine burn model after the application of Acticoat. A total of 125 blood samples were collected from 46 pediatric burn patients. Thirty-six patients with a mean of 13.4% TBSA burns had a mean peak serum silver level of 114 microg/L, whereas 10 patients with a mean of 1.85% TBSA burns had an undetectable level of silver (<5.4 microg/L). Overall, serum silver levels were closely related to burn sizes. However, the highest serum silver was 735 microg/L in a 15-month-old toddler with 10% TBSA burns and the second highest was 367 microg/L in a 3-year old with 28% TBSA burns. In a porcine model with 2% TBSA burns, the mean peak silver level was 38 microg/L at 2 to 3 weeks after application of Acticoat and was then significantly reduced to an almost undetectable level at 6 weeks. Of a total of four pigs, silver was detected in all four livers (1.413 microg/g) and all four hearts (0.342 microg/g), three of four kidneys (1.113 microg/g), and two of four brains (0.402 microg/g). This result demonstrated that although variable, the level of serum silver was positively associated with the size of burns, and significant amounts of silver were deposited in internal organs in pigs with only 2% TBSA burns, after application of Acticoat.
Resumo:
The use of Mahalanobis squared distance–based novelty detection in statistical damage identification has become increasingly popular in recent years. The merit of the Mahalanobis squared distance–based method is that it is simple and requires low computational effort to enable the use of a higher dimensional damage-sensitive feature, which is generally more sensitive to structural changes. Mahalanobis squared distance–based damage identification is also believed to be one of the most suitable methods for modern sensing systems such as wireless sensors. Although possessing such advantages, this method is rather strict with the input requirement as it assumes the training data to be multivariate normal, which is not always available particularly at an early monitoring stage. As a consequence, it may result in an ill-conditioned training model with erroneous novelty detection and damage identification outcomes. To date, there appears to be no study on how to systematically cope with such practical issues especially in the context of a statistical damage identification problem. To address this need, this article proposes a controlled data generation scheme, which is based upon the Monte Carlo simulation methodology with the addition of several controlling and evaluation tools to assess the condition of output data. By evaluating the convergence of the data condition indices, the proposed scheme is able to determine the optimal setups for the data generation process and subsequently avoid unnecessarily excessive data. The efficacy of this scheme is demonstrated via applications to a benchmark structure data in the field.
Resumo:
Public health research consistently demonstrates the salience of neighbourhood as a determinant of both health-related behaviours and outcomes across the human life course. This paper will report on the findings from a mixed-methods Brisbane-based study that explores how mothers with primary school children from both high and low socioeconomic suburbs use the local urban environment for the purpose of physical activity. Firstly, we demonstrate findings from an innovative methodology using the geographic information systems (GIS) embedded in social media platforms on mobile phones to track locations, resource-use, distances travelled, and modes of transport of the families in real-time; and secondly, we report on qualitative data that provides insight into reasons for differential use of the environment by both groups. Spatial/mapping and statistical data showed that while the mothers from both groups demonstrated similar daily routines, the mothers from the high SEP suburb engaged in increased levels of physical activity, travelled less frequently and less distance by car, and walked more for transport. The qualitative data revealed differences in the psychosocial processes and characteristics of the households and neighbourhoods of the respective groups, with mothers in the lower SEP suburb reporting more stress, higher conflict, and lower quality relationships with neighbours.
Resumo:
This work considers the problem of building high-fidelity 3D representations of the environment from sensor data acquired by mobile robots. Multi-sensor data fusion allows for more complete and accurate representations, and for more reliable perception, especially when different sensing modalities are used. In this paper, we propose a thorough experimental analysis of the performance of 3D surface reconstruction from laser and mm-wave radar data using Gaussian Process Implicit Surfaces (GPIS), in a realistic field robotics scenario. We first analyse the performance of GPIS using raw laser data alone and raw radar data alone, respectively, with different choices of covariance matrices and different resolutions of the input data. We then evaluate and compare the performance of two different GPIS fusion approaches. The first, state-of-the-art approach directly fuses raw data from laser and radar. The alternative approach proposed in this paper first computes an initial estimate of the surface from each single source of data, and then fuses these two estimates. We show that this method outperforms the state of the art, especially in situations where the sensors react differently to the targets they perceive.
Resumo:
Field robots often rely on laser range finders (LRFs) to detect obstacles and navigate autonomously. Despite recent progress in sensing technology and perception algorithms, adverse environmental conditions, such as the presence of smoke, remain a challenging issue for these robots. In this paper, we investigate the possibility to improve laser-based perception applications by anticipating situations when laser data are affected by smoke, using supervised learning and state-of-the-art visual image quality analysis. We propose to train a k-nearest-neighbour (kNN) classifier to recognise situations where a laser scan is likely to be affected by smoke, based on visual data quality features. This method is evaluated experimentally using a mobile robot equipped with LRFs and a visual camera. The strengths and limitations of the technique are identified and discussed, and we show that the method is beneficial if conservative decisions are the most appropriate.
Resumo:
This paper proposes an experimental study of quality metrics that can be applied to visual and infrared images acquired from cameras onboard an unmanned ground vehicle (UGV). The relevance of existing metrics in this context is discussed and a novel metric is introduced. Selected metrics are evaluated on data collected by a UGV in clear and challenging environmental conditions, represented in this paper by the presence of airborne dust or smoke. An example of application is given with monocular SLAM estimating the pose of the UGV while smoke is present in the environment. It is shown that the proposed novel quality metric can be used to anticipate situations where the quality of the pose estimate will be significantly degraded due to the input image data. This leads to decisions of advantageously switching between data sources (e.g. using infrared images instead of visual images).