893 resultados para data driven approach
Resumo:
Lipidic mixtures present a particular phase change profile highly affected by their unique crystalline structure. However, classical solid-liquid equilibrium (SLE) thermodynamic modeling approaches, which assume the solid phase to be a pure component, sometimes fail in the correct description of the phase behavior. In addition, their inability increases with the complexity of the system. To overcome some of these problems, this study describes a new procedure to depict the SLE of fatty binary mixtures presenting solid solutions, namely the Crystal-T algorithm. Considering the non-ideality of both liquid and solid phases, this algorithm is aimed at the determination of the temperature in which the first and last crystal of the mixture melts. The evaluation is focused on experimental data measured and reported in this work for systems composed of triacylglycerols and fatty alcohols. The liquidus and solidus lines of the SLE phase diagrams were described by using excess Gibbs energy based equations, and the group contribution UNIFAC model for the calculation of the activity coefficients of both liquid and solid phases. Very low deviations of theoretical and experimental data evidenced the strength of the algorithm, contributing to the enlargement of the scope of the SLE modeling.
Resumo:
To analyze the effects of treatment approach on the outcomes of newborns (birth weight [BW] < 1,000 g) with patent ductus arteriosus (PDA), from the Brazilian Neonatal Research Network (BNRN) on: death, bronchopulmonary dysplasia (BPD), severe intraventricular hemorrhage (IVH III/IV), retinopathy of prematurity requiring surgical (ROPsur), necrotizing enterocolitis requiring surgery (NECsur), and death/BPD. This was a multicentric, cohort study, retrospective data collection, including newborns (BW < 1000 g) with gestational age (GA) < 33 weeks and echocardiographic diagnosis of PDA, from 16 neonatal units of the BNRN from January 1, 2010 to Dec 31, 2011. Newborns who died or were transferred until the third day of life, and those with presence of congenital malformation or infection were excluded. Groups: G1 - conservative approach (without treatment), G2 - pharmacologic (indomethacin or ibuprofen), G3 - surgical ligation (independent of previous treatment). Factors analyzed: antenatal corticosteroid, cesarean section, BW, GA, 5 min. Apgar score < 4, male gender, Score for Neonatal Acute Physiology Perinatal Extension (SNAPPE II), respiratory distress syndrome (RDS), late sepsis (LS), mechanical ventilation (MV), surfactant (< 2 h of life), and time of MV. death, O2 dependence at 36 weeks (BPD36wks), IVH III/IV, ROPsur, NECsur, and death/BPD36wks. Student's t-test, chi-squared test, or Fisher's exact test; Odds ratio (95% CI); logistic binary regression and backward stepwise multiple regression. Software: MedCalc (Medical Calculator) software, version 12.1.4.0. p-values < 0.05 were considered statistically significant. 1,097 newborns were selected and 494 newborns were included: G1 - 187 (37.8%), G2 - 205 (41.5%), and G3 - 102 (20.6%). The highest mortality was observed in G1 (51.3%) and the lowest in G3 (14.7%). The highest frequencies of BPD36wks (70.6%) and ROPsur were observed in G3 (23.5%). The lowest occurrence of death/BPD36wks occurred in G2 (58.0%). Pharmacological (OR 0.29; 95% CI: 0.14-0.62) and conservative (OR 0.34; 95% CI: 0.14-0.79) treatments were protective for the outcome death/BPD36wks. The conservative approach of PDA was associated to high mortality, the surgical approach to the occurrence of BPD36wks and ROPsur, and the pharmacological treatment was protective for the outcome death/BPD36wks.
Resumo:
Often in biomedical research, we deal with continuous (clustered) proportion responses ranging between zero and one quantifying the disease status of the cluster units. Interestingly, the study population might also consist of relatively disease-free as well as highly diseased subjects, contributing to proportion values in the interval [0, 1]. Regression on a variety of parametric densities with support lying in (0, 1), such as beta regression, can assess important covariate effects. However, they are deemed inappropriate due to the presence of zeros and/or ones. To evade this, we introduce a class of general proportion density, and further augment the probabilities of zero and one to this general proportion density, controlling for the clustering. Our approach is Bayesian and presents a computationally convenient framework amenable to available freeware. Bayesian case-deletion influence diagnostics based on q-divergence measures are automatic from the Markov chain Monte Carlo output. The methodology is illustrated using both simulation studies and application to a real dataset from a clinical periodontology study.
Resumo:
Cancer is a multistep process that begins with the transformation of normal epithelial cells and continues with tumor growth, stromal invasion and metastasis. The remodeling of the peritumoral environment is decisive for the onset of tumor invasiveness. This event is dependent on epithelial-stromal interactions, degradation of extracellular matrix components and reorganization of fibrillar components. Our research group has studied in a new proposed rodent model the participation of cellular and molecular components in the prostate microenvironment that contributes to cancer progression. Our group adopted the gerbil Meriones unguiculatus as an alternative experimental model for prostate cancer study. This model has presented significant responses to hormonal treatments and to development of spontaneous and induced neoplasias. The data obtained indicate reorganization of type I collagen fibers and reticular fibers, synthesis of new components such as tenascin and proteoglycans, degradation of basement membrane components and elastic fibers and increased expression of metalloproteinases. Fibroblasts that border the region, apparently participate in the stromal reaction. The roles of each of these events, as well as some signaling molecules, participants of neoplastic progression and factors that promote genetic reprogramming during epithelial-stromal transition are also discussed.
Resumo:
In this work, all publicly-accessible published findings on Alicyclobacillus acidoterrestris heat resistance in fruit beverages as affected by temperature and pH were compiled. Then, study characteristics (protocols, fruit and variety, °Brix, pH, temperature, heating medium, culture medium, inactivation method, strains, etc.) were extracted from the primary studies, and some of them incorporated to a meta-analysis mixed-effects linear model based on the basic Bigelow equation describing the heat resistance parameters of this bacterium. The model estimated mean D* values (time needed for one log reduction at a temperature of 95 °C and a pH of 3.5) of Alicyclobacillus in beverages of different fruits, two different concentration types, with and without bacteriocins, and with and without clarification. The zT (temperature change needed to cause one log reduction in D-values) estimated by the meta-analysis model were compared to those ('observed' zT values) reported in the primary studies, and in all cases they were within the confidence intervals of the model. The model was capable of predicting the heat resistance parameters of Alicyclobacillus in fruit beverages beyond the types available in the meta-analytical data. It is expected that the compilation of the thermal resistance of Alicyclobacillus in fruit beverages, carried out in this study, will be of utility to food quality managers in the determination or validation of the lethality of their current heat treatment processes.
Resumo:
Size distributions in woody plant populations have been used to assess their regeneration status, assuming that size structures with reverse-J shapes represent stable populations. We present an empirical approach of this issue using five woody species from the Cerrado. Considering count data for all plants of these five species over a 12-year period, we analyzed size distribution by: a) plotting frequency distributions and their adjustment to the negative exponential curve and b) calculating the Gini coefficient. To look for a relationship between size structure and future trends, we considered the size structures from the first census year. We analyzed changes in number over time and performed a simple population viability analysis, which gives the mean population growth rate, its variance and the probability of extinction in a given time period. Frequency distributions and the Gini coefficient were not able to predict future trends in population numbers. We recommend that managers should not use measures of size structure as a basis for management decisions without applying more appropriate demographic studies.
Resumo:
Geographic Data Warehouses (GDW) are one of the main technologies used in decision-making processes and spatial analysis, and the literature proposes several conceptual and logical data models for GDW. However, little effort has been focused on studying how spatial data redundancy affects SOLAP (Spatial On-Line Analytical Processing) query performance over GDW. In this paper, we investigate this issue. Firstly, we compare redundant and non-redundant GDW schemas and conclude that redundancy is related to high performance losses. We also analyze the issue of indexing, aiming at improving SOLAP query performance on a redundant GDW. Comparisons of the SB-index approach, the star-join aided by R-tree and the star-join aided by GiST indicate that the SB-index significantly improves the elapsed time in query processing from 25% up to 99% with regard to SOLAP queries defined over the spatial predicates of intersection, enclosure and containment and applied to roll-up and drill-down operations. We also investigate the impact of the increase in data volume on the performance. The increase did not impair the performance of the SB-index, which highly improved the elapsed time in query processing. Performance tests also show that the SB-index is far more compact than the star-join, requiring only a small fraction of at most 0.20% of the volume. Moreover, we propose a specific enhancement of the SB-index to deal with spatial data redundancy. This enhancement improved performance from 80 to 91% for redundant GDW schemas.
Resumo:
The objective of the study is to evaluate the effect of the daily variation in concentrations of fine particulate matter (diameter less than 2.5µm - PM2.5) resulting from the burning of biomass on the daily number of hospitalizations of children and elderly people for respiratory diseases, in Alta Floresta and Tangará da Serra in the Brazilian Amazon in 2005. This is an ecological time series study that uses data on daily number of hospitalizations of children and the elderly for respiratory diseases, and estimated concentration of PM2.5. In Alta Floresta, the percentage increases in the relative risk (%RR) of hospitalization for respiratory diseases in children were significant for the whole year and for the dry season with 3-4 day lags. In the dry season these measurements reach 6% (95%CI: 1.4-10.8). The associations were sig-nificant for moving averages of 3-5 days. The %RR for the elderly was significant for the current day of the drought, with a 6.8% increase (95%CI: 0.5-13.5) for each additional 10µg/m3 of PM2.5. No as-sociations were verified for Tangara da Serra. The PM2.5 from the burning of biomass increased hospitalizations for respiratory diseases in children and the elderly.
Resumo:
Diagnostic methods have been an important tool in regression analysis to detect anomalies, such as departures from error assumptions and the presence of outliers and influential observations with the fitted models. Assuming censored data, we considered a classical analysis and Bayesian analysis assuming no informative priors for the parameters of the model with a cure fraction. A Bayesian approach was considered by using Markov Chain Monte Carlo Methods with Metropolis-Hasting algorithms steps to obtain the posterior summaries of interest. Some influence methods, such as the local influence, total local influence of an individual, local influence on predictions and generalized leverage were derived, analyzed and discussed in survival data with a cure fraction and covariates. The relevance of the approach was illustrated with a real data set, where it is shown that, by removing the most influential observations, the decision about which model best fits the data is changed.
Resumo:
Natural products have widespread biological activities, including inhibition of mitochondrial enzyme systems. Some of these activities, for example cytotoxicity, may be the result of alteration of cellular bioenergetics. Based on previous computer-aided drug design (CADD) studies and considering reported data on structure-activity relationships (SAR), an assumption regarding the mechanism of action of natural products against parasitic infections involves the NADH-oxidase inhibition. In this study, chemometric tools, such as: Principal Component Analysis (PCA), Consensus PCA (CPCA), and partial least squares regression (PLS), were applied to a set of forty natural compounds, acting as NADH-oxidase inhibitors. The calculations were performed using the VolSurf+ program. The formalisms employed generated good exploratory and predictive results. The independent variables or descriptors having a hydrophobic profile were strongly correlated to the biological data.
Resumo:
Background: Population antimicrobial use may influence resistance emergence. Resistance is an ecological phenomenon due to potential transmissibility. We investigated spatial and temporal patterns of ciprofloxacin (CIP) population consumption related to E. coli resistance emergence and dissemination in a major Brazilian city. A total of 4,372 urinary tract infection E. coli cases, with 723 CIP resistant, were identified in 2002 from two outpatient centres. Cases were address geocoded in a digital map. Raw CIP consumption data was transformed into usage density in DDDs by CIP selling points influence zones determination. A stochastic model coupled with a Geographical Information System was applied for relating resistance and usage density and for detecting city areas of high/low resistance risk. Results: E. coli CIP resistant cluster emergence was detected and significantly related to usage density at a level of 5 to 9 CIP DDDs. There were clustered hot-spots and a significant global spatial variation in the residual resistance risk after allowing for usage density. Conclusions: There were clustered hot-spots and a significant global spatial variation in the residual resistance risk after allowing for usage density. The usage density of 5-9 CIP DDDs per 1,000 inhabitants within the same influence zone was the resistance triggering level. This level led to E. coli resistance clustering, proving that individual resistance emergence and dissemination was affected by antimicrobial population consumption.
Resumo:
The interplay between the biocolloidal characteristics (especially size and charge), pH, salt concentration and the thermal energy results in a unique collection of mesoscopic forces of importance to the molecular organization and function in biological systems. By means of Monte Carlo simulations and semi-quantitative analysis in terms of perturbation theory, we describe a general electrostatic mechanism that gives attraction at low electrolyte concentrations. This charge regulation mechanism due to titrating amino acid residues is discussed in a purely electrostatic framework. The complexation data reported here for interaction between a polyelectrolyte chain and the proteins albumin, goat and bovine alpha-lactalbumin, beta-lactoglobulin, insulin, k-casein, lysozyme and pectin methylesterase illustrate the importance of the charge regulation mechanism. Special attention is given to pH congruent to pI where ion-dipole and charge regulation interactions could overcome the repulsive ion-ion interaction. By means of protein mutations, we confirm the importance of the charge regulation mechanism, and quantify when the complexation is dominated either by charge regulation or by the ion-dipole term.
Resumo:
We consider a nontrivial one-species population dynamics model with finite and infinite carrying capacities. Time-dependent intrinsic and extrinsic growth rates are considered in these models. Through the model per capita growth rate we obtain a heuristic general procedure to generate scaling functions to collapse data into a simple linear behavior even if an extrinsic growth rate is included. With this data collapse, all the models studied become independent from the parameters and initial condition. Analytical solutions are found when time-dependent coefficients are considered. These solutions allow us to perceive nontrivial transitions between species extinction and survival and to calculate the transition's critical exponents. Considering an extrinsic growth rate as a cancer treatment, we show that the relevant quantity depends not only on the intensity of the treatment, but also on when the cancerous cell growth is maximum.
Resumo:
Background: A relative friability to capture a sufficiently large patient population in any one geographic location has traditionally limited research into rare diseases. Methods and Results: Clinicians interested in the rare disease lymphangioleiomyomatosis (LAM) have worked with the LAM Treatment Alliance, the MIT Media Lab, and Clozure Associates to cooperate in the design of a state-of-the-art data coordination platform that can be used for clinical trials and other research focused on the global LAM patient population. This platform is a component of a set of web-based resources, including a patient self-report data portal, aimed at accelerating research in rare diseases in a rigorous fashion. Conclusions: Collaboration between clinicians, researchers, advocacy groups, and patients can create essential community resource infrastructure to accelerate rare disease research. The International LAM Registry is an example of such an effort.
Resumo:
We report the first quantitative and qualitative analysis of the poly (A)(+) transcriptome of two human mammary cell lines, differentially expressing (human epidermal growth factor receptor) an oncogene over-expressed in approximately 25% of human breast tumors. Full-length cDNA populations from the two cell lines were digested enzymatically, individually tagged according to a customized method for library construction, and simultaneously sequenced by the use of the Titanium 454-Roche-platform. Comprehensive bioinformatics analysis followed by experimental validation confirmed novel genes, splicing variants, single nucleotide polymorphisms, and gene fusions indicated by RNA-seq data from both samples. Moreover, comparative analysis showed enrichment in alternative events, especially in the exon usage category, in ERBB2 over-expressing cells, data indicating regulation of alternative splicing mediated by the oncogene. Alterations in expression levels of genes, such as LOX, ATP5L, GALNT3, and MME revealed by large-scale sequencing were confirmed between cell lines as well as in tumor specimens with different ERBB2 backgrounds. This approach was shown to be suitable for structural, quantitative, and qualitative assessment of complex transcriptomes and revealed new events mediated by ERBB2 overexpression, in addition to potential molecular targets for breast cancer that are driven by this oncogene.